期刊文献+
共找到980篇文章
< 1 2 49 >
每页显示 20 50 100
Application of Artificial Neural Network to Predicting Hardenability of Gear Steel 被引量:4
1
作者 GAO Xiu-hua QI Ke-min +3 位作者 DENG Tian-yong QIU Chun-lin ZHOU Ping DU Xian-bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第6期71-73,共3页
The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or ... The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or the chemical composition by its hardenability. The prediction result is more precise than that obtained from the traditional method based on the simple mathematical regression model. 展开更多
关键词 artificial neural network (ANN) gear steel HARDENABILITY 20CrMnTiH
下载PDF
Artificial neural networks in steel-mushy aluminum pressing bonding 被引量:1
2
作者 张鹏 刘汉武 +1 位作者 任学平 巴立民 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期213-216,共4页
Artificial neural networks were successfully used to research the modeling of aluminum solid fraction, preheat temperature of steel plate, preheat temperature of dies, free diffusing time before pressing and the inter... Artificial neural networks were successfully used to research the modeling of aluminum solid fraction, preheat temperature of steel plate, preheat temperature of dies, free diffusing time before pressing and the interfacial shear strength in steel mushy aluminum pressing bonding. Further more, the optimum bonding parameters for the largest interfacial shear strength were also optimized with a genetic algorithm. 展开更多
关键词 artificial neural networks steel-mushy ALUMINUM BONDING GENETIC algorithm
下载PDF
Effect of Chromium on CCT Diagrams of Novel Air-Cooled Bainite Steels Analyzed by Neural Network 被引量:4
3
作者 YOU Wei XU Wei-hong +2 位作者 LIU Ya-xiu BAI Bing-zhe FANG Hong-sheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第4期39-42,共4页
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c... The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation. 展开更多
关键词 novel air-cooled bainite steel CCT diagram artificial neural network chromium content quantitative effect
下载PDF
Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression 被引量:3
4
作者 Ravindranadh BOBBILI V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第4期334-342,共9页
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper... An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures. 展开更多
关键词 人工神经网络模型 高应变率 高强度 装甲钢 流变应力 可预测性 压缩 评估
下载PDF
Prediction of Axial Capacity of Concrete-Filled Square Steel Tubes Using Neural Networks
5
作者 朱美春 王清湘 冯秀峰 《Journal of Southwest Jiaotong University(English Edition)》 2005年第2期151-155,共5页
The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concret... The application of artificial neural network to predict the ultimate bearing capacity of CFST ( concrete-filled square steel tubes) short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables. Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns. 展开更多
关键词 Concrete-filled square steel tubes Neural networks Axial capacity Short columns
下载PDF
Application of Artificial Neural Network in Predicting the Thickness of Chromizing Coatings on P110 Steel 被引量:2
6
作者 林乃明 XIE Faqin +2 位作者 ZOU Jiaojuan WANG Hefeng TANG Bin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期196-201,共6页
A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN)... A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range. 展开更多
关键词 artificial neural network thickness rare earth chromizing coating P110 steel
下载PDF
Quantitative analysis of Ni effect on CCT diagrams of novel air-cooled bainite steels using artificial neural network models
7
作者 Weihong Xu Wei You +2 位作者 Yaxiu Liu Bingzhe Bai Hongsheng Fang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期410-415,共6页
The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard... The quantitative effect of Ni content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels was analyzed using artificial neural network models. The results showed that Ni may retard the high- and medium-temperature transformation and martensite transformation. The results conform to the materials science theories. 展开更多
关键词 novel air-cooled bainite steels NICKEL CCT diagrams artificial neural network
下载PDF
Artificial neural network modeling of mechanical properties of armor steel under complex loading conditions
8
作者 许泽建 黄风雷 《Journal of Beijing Institute of Technology》 EI CAS 2012年第2期157-163,共7页
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ... An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions. 展开更多
关键词 artificial neural network (ANN) armor steel high strain rate high temperature plas-tic behavior constitutive model
下载PDF
脉冲磁场对GCr15轴承钢网状碳化物的影响
9
作者 申丽娟 麻永林 +3 位作者 谢港生 刘永珍 陈重毅 邢淑清 《材料热处理学报》 CAS CSCD 北大核心 2024年第5期114-121,共8页
在GCr15轴承钢的球化退火过程中施加脉冲磁场,研究脉冲磁场对其组织形貌和力学性能的影响,探讨脉冲磁场作用下网状碳化物溶解的热力学和动力学机理。结果表明:随着施加脉冲磁场时间的延长,GCr15轴承钢中沿晶界分布的碳化物由封闭网转变... 在GCr15轴承钢的球化退火过程中施加脉冲磁场,研究脉冲磁场对其组织形貌和力学性能的影响,探讨脉冲磁场作用下网状碳化物溶解的热力学和动力学机理。结果表明:随着施加脉冲磁场时间的延长,GCr15轴承钢中沿晶界分布的碳化物由封闭网转变为半网,当施加脉冲磁场时间为20 min,晶界处的网状碳化物消失。这主要是由于施加脉冲磁场后,在热力学方面网状碳化物溶解的势垒降低,动力学方面原子扩散系数增大,这都促进了网状碳化物的溶解。随着施加脉冲磁场时间的延长,GCr15轴承钢的抗拉强度(R_(m))和屈服强度(R_(p0.2))基本保持不变,伸长率(A)提高了18%(从5 min的33%提高到20 min的39%),断面收缩率(Z)提高了13%(从5 min的61%提高到20 min的69%)。 展开更多
关键词 GCR15轴承钢 脉冲磁场 网状碳化物
下载PDF
适用于区域建筑群实时震害模拟的LSTM-FC组合深度网络模型研究
10
作者 孙海 徐晓君 +3 位作者 邢启航 张孝伟 姜慧 阮雪景 《世界地震工程》 北大核心 2024年第3期46-59,共14页
建筑物破坏在地震灾害中往往会导致巨大损失,对城市建筑群进行灾前灾时的震害预测具有重要意义。传统BP(back propagation)网络和CNN(convolutional neural networks)网络等人工智能方法在进行震害预测时多集中于提取建筑物信息。然而,... 建筑物破坏在地震灾害中往往会导致巨大损失,对城市建筑群进行灾前灾时的震害预测具有重要意义。传统BP(back propagation)网络和CNN(convolutional neural networks)网络等人工智能方法在进行震害预测时多集中于提取建筑物信息。然而,这些方法在处理地震波的时序数据方面有所不足,导致其在整合和分析对地震灾害预测至关重要的时序相关因素时效果有限。因此,本文提出一种耦合LSTM(long short-term memory)和FC(fully connected)神经网络的震害预测方法。LSTM网络擅长处理具有时间序列特性的地震波信息,能够捕捉和分析随时间变化的地震波动模式。同时,全连接网络可用于综合分析所有相关的震害因子。通过对云浮地区265栋典型钢混建筑进行指标量化并确定输入指标(震害影响因子)和输出指标(震害指数),利用LSTM-FC组合深度网络、CNN网络和BP网络模型对数据进行训练并优化。通过将LSTM-FC网络模型的预测结果与弹塑性时程分析比较,发现该模型在拟合效果和精度方面优于传统的BP和CNN模型。拟合效果提升了36.8%和10.6%,精度分别提升了77.6%和91.7%,表明LSTM-FC网络在地震损害预测上更为有效。同时,将该方法应用于广东省云浮市钢混结构群震害预测,构建的易损性矩阵与华南地区的易损性矩阵均值进行了对比,显示误差相对较小,说明该模型不仅理论上可行,在实际应用中也能表现出较高的准确性和有效性。 展开更多
关键词 震害预测 LSTM网络 全连接网络 钢混建筑物
下载PDF
Identification of the Credit Guarantee Network of Steel Trade Enterprises in China
11
作者 蒙肖莲 顾文祥 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期796-800,共5页
The risk points in the credit guarantee network of steel trade enterprises were identified by using the network analysis method in this paper. Firstly, the formation and operation mechanism of steel trade credit guara... The risk points in the credit guarantee network of steel trade enterprises were identified by using the network analysis method in this paper. Firstly, the formation and operation mechanism of steel trade credit guarantee network was analyzed.Secondly,a guarantee network was established to analyze the related network structure indexes based on the mutual guarantee data of 83 enterprises in a steel trade market. These indexes included centrality,honest broker,and structural hole. The results suggest that network analysis method can be used to find out the risk points of the guarantee network. Additionally,some recommendations are brought forth to reduce or prevent future crises. 展开更多
关键词 credit guarantee network network analysis method risk identification steel trade enterprises
下载PDF
A Predictive Modeling Based on Regression and Artificial Neural Network Analysis of Laser Transformation Hardening for Cylindrical Steel Workpieces
12
作者 Ahmed Ghazi Jerniti Abderazzak El Ouafi Noureddine Barka 《Journal of Surface Engineered Materials and Advanced Technology》 2016年第4期149-163,共15页
Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on... Laser surface hardening is a very promising hardening process for ferrous alloys where transformations occur during cooling after laser heating in the solid state. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To exploit the benefits presented by the laser hardening process, it is necessary to develop an integrated strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive modelling approach for predicting the hardened surface physical and geometrical attributes. The laser surface transformation hardening of cylindrical AISI 4340 steel workpieces is modeled using the conventional regression equation method as well as artificial neural network method. The process parameters included in the study are laser power, beam scanning speed, and the workpiece rotational speed. The upper and the lower limits for each parameter are chosen considering the start of the transformation hardening and the maximum hardened zone without surface melting. The resulting models are able to predict the depths representing the maximum hardness zone, the hardness drop zone, and the overheated zone without martensite transformation. Because of its ability to model highly nonlinear problems, the ANN based model presents the best modelling results and can predict the hardness profile with good accuracy. 展开更多
关键词 Heat Treatment Laser Surface Hardening Hardness Predictive Modeling Regression Analysis Artificial Neural network Cylindrical steel Workpieces AISI 4340 steel Nd:Yag Laser System
下载PDF
预制装配式型钢混凝土梁抗剪承载力的智能模型研究 被引量:1
13
作者 刘坚 招渝 +11 位作者 刘长江 马宏伟 邢增林 周观根 肖海鹏 彭林苗 任达 陈原 童华炜 戚玉亮 杨勤鹏 张专涛 《建筑钢结构进展》 CSCD 北大核心 2024年第3期12-20,共9页
通过建立计算预制装配式型钢混凝土(PSRC)梁抗剪承载力的智能模型,在一定程度上提高了计算精度与适用性。基于BP人工神经网络算法,通过对影响PSRC梁抗剪承载力的相关参数进行梳理,选取14个主要影响参数作为输入层,以试算法确定隐含层节... 通过建立计算预制装配式型钢混凝土(PSRC)梁抗剪承载力的智能模型,在一定程度上提高了计算精度与适用性。基于BP人工神经网络算法,通过对影响PSRC梁抗剪承载力的相关参数进行梳理,选取14个主要影响参数作为输入层,以试算法确定隐含层节点数为5,初步构建了3层结构人工神经网络系统;以收集的76组试验数据作为学习样本,对构建的神经网络系统进行训练,建立了对PSRC梁及SRC梁抗剪承载力计算的N14-5-1智能模型。使用智能模型对6个PSRC梁构件及6个SRC梁构件进行抗剪承载力计算,并通过与规范公式计算结果、试验结果的对比分析,证明了智能模型具有良好的计算精度及较好的泛化能力,具有一定的工程参考意义。运用Garson算法对输入参数进行敏感性分析,结果表明箍筋间距、型钢屈服强度、箍筋屈服强度、型钢腹板含钢率对抗剪承载力影响较大。随着研究试验的开展,在收集更多具有代表性的试验数据以扩充学习样本后,可对智能模型进一步优化。 展开更多
关键词 预制装配式型钢混凝土梁 BP人工神经网络 抗剪承载力 智能模型
下载PDF
掺氢输送管道材料的适应性及评价方法
14
作者 吴华 徐莹莹 +4 位作者 徐凌 米杰 李林峰 唐永帆 王业熙 《力学与实践》 2024年第4期722-731,共10页
天然气管网掺氢输送可有效解决氢能利用过程中的输送问题,但这会给管道带来安全风险。本文详细评述了掺氢输送管道金属和非金属材料的种类、适应性影响因素及其评价方法,建议完善和利用现有金属和非金属材料宏观性能表征及微观机理分析... 天然气管网掺氢输送可有效解决氢能利用过程中的输送问题,但这会给管道带来安全风险。本文详细评述了掺氢输送管道金属和非金属材料的种类、适应性影响因素及其评价方法,建议完善和利用现有金属和非金属材料宏观性能表征及微观机理分析方法,结合实际工况环境及材料关键性能指标,建立掺氢输送管道的适应性评价方法和评价限值要求,并完善实际掺氢试运行评价方法和评判标准。本文可为天然气管网掺氢输送工程提供重要参考。 展开更多
关键词 掺氢 适应性评价 天然气管网 管线钢 非金属材料
下载PDF
A NEURAL NETWORK-BASED MODEL FOR PREDICTION OF HOT-ROLLED AUSTENITE GRAIN SIZE AND FLOW STRESS IN MICROALLOY STEEL
15
作者 J. T.Niu,L.J.Sun and P.Karjalainen 1) Harbin Institute of Technology, Harbin 150001, China 2) University of Oulu, FIN-90571, Oulu, Finland 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期521-530,共10页
For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection o... For the great significance of the prediction of control parameters selected for hot-rolling and the evaluation of hot-rolling quality for the analysis of prod uction problems and production management, the selection of hot-rolling control parameters was studied for microalloy steel by following the neural network principle. An experimental scheme was first worked out for acquisition of sample data, in which a gleeble-1500 thermal simolator was used to obtain rolling temperature, strain, stain rate, and stress-strain curves. And consequently the aust enite grain sizes was obtained through microscopic observation. The experimental data was then processed through regression. By using the training network of BP algorithm, the mapping relationship between the hotrooling control parameters (rolling temperature, stain, and strain rate) and the microstructural paramete rs (austenite grain in size and flow stress) of microalloy steel was function appro ached for the establishment of a neural network-based model of the austeuite grain size and flow stress of microalloy steel. From the results of estimation made with the neural network based model, the hot-rolling control parameters can be effectively predicted. 展开更多
关键词 microalloy steel controlled rolling austenite grain size flow stress neural network BP algorithm
下载PDF
SWRH72BCr钢连铸坯表层网状渗碳体的形成和预防 被引量:1
16
作者 李强 张康晖 +3 位作者 马建超 文光华 周健 韩富年 《上海金属》 CAS 2024年第1期62-69,共8页
SWRH72BCr钢连铸坯表面常常发现有异常振痕的部位表层有网状渗碳体。研究了网状渗碳体的形成原因。结果表明:保护渣液渣层偏薄且厚度不均匀、结晶器振动装置偏振量大是连铸坯表层形成异常振痕的主要原因。通过优化保护渣成分,将保护渣... SWRH72BCr钢连铸坯表面常常发现有异常振痕的部位表层有网状渗碳体。研究了网状渗碳体的形成原因。结果表明:保护渣液渣层偏薄且厚度不均匀、结晶器振动装置偏振量大是连铸坯表层形成异常振痕的主要原因。通过优化保护渣成分,将保护渣加渣间隔时间从30 s调整为23 s,结晶器偏振量从0.25 mm减小到0.10 mm,表面有异常振痕的SWRH72BCr钢连铸坯的百分率从7.24%降低到了0.15%,表层有网状渗碳体的连铸坯百分率从1.31%降低到了0.10%。 展开更多
关键词 SWRH72BCr钢 网状渗碳体 振痕 保护渣 偏振量
下载PDF
基于神经网络的输电塔钢管构件涡激振动幅值预测方法 被引量:1
17
作者 李佳鸿 李正良 王涛 《工程力学》 EI CSCD 北大核心 2024年第1期64-75,共12页
输电塔中长细比较大的钢管构件容易发生低风速下的涡激振动,鉴于传统风洞试验和数值模拟研究方法存在的成本高、周期长的局限,该文提出了一种基于神经网络的输电塔钢管构件涡激振动幅值高效预测方法。为获取训练模型所需的数据集,发展... 输电塔中长细比较大的钢管构件容易发生低风速下的涡激振动,鉴于传统风洞试验和数值模拟研究方法存在的成本高、周期长的局限,该文提出了一种基于神经网络的输电塔钢管构件涡激振动幅值高效预测方法。为获取训练模型所需的数据集,发展了适用于任意插板形式、几何尺寸的钢管构件涡激振动响应分析方法;结合多种神经网络模型(BPNN、PSO-BPNN、RBFNN、GRNN)以及性能评价指标,建立了基于神经网络的输电塔钢管构件涡激振动幅值预测方法;通过算例对某C型插板和十字型插板钢管构件涡激振动幅值进行了预测。研究表明:通过与试验结果的对比,验证了该文输电塔钢管构件涡激振动响应分析方法的准确性,对于C型和十字型插板钢管构件VIV幅值的相对误差分别为3.84%和5.87%,利用该方法可为神经网络模型提供可靠样本;通过7折10次交叉验证优化超参数后的4种神经网络模型,均表现出较好的预测精度;相比之下,GRNN在C型插板和十字型插板钢管构件算例中均呈现出最佳的泛化能力,其R2值分别为0.989和0.992;采用GRNN方法可以较好地预测C型和十字型插板钢管构件在不同质量阻尼比参数下的VIV幅值,且在计算效率上相比于CFD方法具有明显的优势。 展开更多
关键词 输电塔 涡激振动 钢管构件 神经网络 幅值预测
下载PDF
基于声发射Ib值分析的渗铝321钢损伤特性研究
18
作者 廖力达 向旭宏 +2 位作者 舒王咏 黄斌 罗晓 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期211-220,共10页
太阳能热发电换热管主要材料渗铝321钢的损伤会导致换热管的寿命缩短甚至断裂,因此必须进行损伤检测。采用声发射方法对渗铝321钢的损伤特性进行分析,实现对换热管性能的在线动态监测。通过采用声发射Ib值特征来表征渗铝321钢的损伤程度... 太阳能热发电换热管主要材料渗铝321钢的损伤会导致换热管的寿命缩短甚至断裂,因此必须进行损伤检测。采用声发射方法对渗铝321钢的损伤特性进行分析,实现对换热管性能的在线动态监测。通过采用声发射Ib值特征来表征渗铝321钢的损伤程度,并运用自组织映射(SOM)神经网络算法进行声发射特征参数聚类,以分析材料的损伤模式。结果表明,力学塑性阶段的声发射事件数量剧增,能量和振铃计数的峰值标志着试件的断裂。此外,在试件失效前,Ib值显著降低且密度变密集,表明Ib值的变化特征可以作为材料临界失效的预警信号。通过SOM算法对特征参数进行聚类分析得到4个簇及其对应的特征频率,并使用扫描电子显微镜(SEM)观察试件的断口形貌,得出4个簇分别对应于孔洞生长与汇合、微裂纹成核、宏观裂纹扩展和纤维状断裂4类损伤模式。这项研究旨在探索金属管材的损伤演化行为,并为管材的损伤分析和健康监测提供依据。 展开更多
关键词 渗铝321钢 声发射 Ib值 SOM神经网络 损伤演化
下载PDF
磷石膏草酸预处理滤液在取向硅钢涂料中的应用研究
19
作者 向凌辉 伍林 +1 位作者 刘盈 胡雅 《无机盐工业》 CAS CSCD 北大核心 2024年第10期103-109,168,共8页
磷石膏高值化利用必须要进行预处理,其中水洗预处理产生的滤液还未有良好的利用途径。通过成分分析发现滤液中含有磷酸盐类、铝类等成分,是提升涂层防腐蚀性能的有效组分。将磷石膏预处理滤液加入到取向硅钢用无机无铬防腐涂料中,并对... 磷石膏高值化利用必须要进行预处理,其中水洗预处理产生的滤液还未有良好的利用途径。通过成分分析发现滤液中含有磷酸盐类、铝类等成分,是提升涂层防腐蚀性能的有效组分。将磷石膏预处理滤液加入到取向硅钢用无机无铬防腐涂料中,并对比了水与草酸溶液不同温度预处理后产生的滤液对涂层防腐性能的影响,研究了滤液中存在的物质及其对涂层防腐蚀性能的提升机理。在草酸溶液预处理、预处理温度为20℃及预处理滤液加入量为5%(质量分数)的条件下,取向硅钢片涂层中性盐雾实验由36 h腐蚀面积为11%降低至腐蚀面积小于1%,腐蚀电流密度降低至0.3171μA/cm^(2),涂层总体阻抗模值提升17%。草酸与磷类杂质反应生成的正磷酸盐占滤液中总磷类的95%以上,滤液通过促进Al PO_(4)网络深度交联形成涂层主体网络结构、突出Mg O的作用在高温下生成Mg_(3)(PO_(4))_(2)网络支链、生成微晶Mg_(2)P_(2)O_(7)和AlF_(3)填充网络孔隙,共同提升了涂层的防腐蚀性。 展开更多
关键词 磷石膏 草酸 取向硅钢 涂层 磷酸盐网络
下载PDF
一般大气环境下钢筋锈蚀深度的RBF神经网络预测模型研究 被引量:1
20
作者 王胜利 刘华 +2 位作者 郑山锁 董淑卿 黄瑜 《地震工程学报》 CSCD 北大核心 2024年第2期269-277,共9页
钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数... 钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数敏感性分析。研究结果表明:与数值模型相比,RBF神经网络对钢筋锈蚀深度预测效率与精度更高,能够有效映射各影响参数与钢筋锈蚀深度之间复杂的非线性关系。参数敏感性分析结果显示,钢筋混凝土表面锈胀裂缝宽度对钢筋锈蚀深度影响最大,钢筋直径、保护层厚度与钢筋直径之比和混凝土抗压强度等其他因素影响次之。所得模型可用于工程检测中钢筋锈蚀程度预测与RC构筑物剩余服役寿命评估。 展开更多
关键词 钢筋混凝土 钢筋锈蚀 RBF神经网络 锈蚀深度预测 敏感性分析
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部