The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the econ...The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the economic impact.This study proposed a new bolting system exploiting steel particles as coupling material.The applicability of this system was assessed by laboratory and field pullout tests,assisted by digital imaging correlation(DIC),infrared thermography(IRT)and acoustic emission(AE).The results indicated that,for a 20 mm diameter bolt,the suitable steel particle size and corresponding inner diameter of borehole were 1.4 and 28 mm,respectively.For bolts installed in steel tubes,the particles improved the loading capacity compared to the resin bonded ones.Additional pullout tests on cement blocks indicated that steel particles can be effective for hard rock,whilst resin was a better choice for bolting of soft rock.Similar understanding was obtained by pullout tests in engineering fields,which demonstrated that the steel particles coupled bolts can provide favorable effects in hard rock mass,while the effects were negligible when installed in extremely soft coal mass.The wide set of multi-technique measurements helped to understand the mechanisms involved in the performance of the bolting system with coupling steel particles.展开更多
The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author ...The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.展开更多
基金The authors would like to acknowledge the financial support of the State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology(No.SICGM202208)China Scholarship Council Grant(CSC#202006425019)Jinbo Hua from Gubei Coal Mine,Cheng-cheng Hu and Guoxiong Hou from Qingdong Coal Mine are acknowledged for their contribution to the field tests.
文摘The effectiveness of rock bolting in ground control has been extensively investigated,mainly for resin based systems.Alternative coupling materials are needed to have good mechanical performance and to reduce the economic impact.This study proposed a new bolting system exploiting steel particles as coupling material.The applicability of this system was assessed by laboratory and field pullout tests,assisted by digital imaging correlation(DIC),infrared thermography(IRT)and acoustic emission(AE).The results indicated that,for a 20 mm diameter bolt,the suitable steel particle size and corresponding inner diameter of borehole were 1.4 and 28 mm,respectively.For bolts installed in steel tubes,the particles improved the loading capacity compared to the resin bonded ones.Additional pullout tests on cement blocks indicated that steel particles can be effective for hard rock,whilst resin was a better choice for bolting of soft rock.Similar understanding was obtained by pullout tests in engineering fields,which demonstrated that the steel particles coupled bolts can provide favorable effects in hard rock mass,while the effects were negligible when installed in extremely soft coal mass.The wide set of multi-technique measurements helped to understand the mechanisms involved in the performance of the bolting system with coupling steel particles.
文摘The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.