A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre...Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.展开更多
To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and disp...To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and dispersed-steel bars-beam on the top floor under cyclic loads were studied.Experimental comparison was conducted between special-shaped(L,T and+)column and normal beams.The cracking load,yielding load,ultimate bearing capacity,failure patterns,and hysteretic properties at joint core area were investigated.The seismic behaviors of the joints with different proportions of dispersed-steelbar beams were analyzed.The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane.Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness.Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.展开更多
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No. GC04A609arbin Key Program on Science and Technology Under Grant No. 2004AA9CS187.
文摘Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
基金This work was partly financial supported by the National Natural Science Foundation of China(Grant No.50678016).
文摘To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and dispersed-steel bars-beam on the top floor under cyclic loads were studied.Experimental comparison was conducted between special-shaped(L,T and+)column and normal beams.The cracking load,yielding load,ultimate bearing capacity,failure patterns,and hysteretic properties at joint core area were investigated.The seismic behaviors of the joints with different proportions of dispersed-steelbar beams were analyzed.The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane.Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness.Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.