期刊文献+
共找到938篇文章
< 1 2 47 >
每页显示 20 50 100
Interfacial reaction between AZ91D magnesium alloy melt and mild steel under high temperature
1
作者 Jia-hong Dai Jian-yue Zhang +5 位作者 Bin Jiang Xiang-jun Xu Zhong-tao Jiang Hong-mei Xie Qing-shan Yang Guo-qing Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第2期159-167,共9页
The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and... The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time. 展开更多
关键词 AZ91D mild steel interface reaction intermetallic growth KINETICS
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
2
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel interface Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures 被引量:1
3
作者 Bozabe Renonet Karka Bassa Bruno +1 位作者 Nadjitonon Ngarmaïm Alladjo Rimbarngaye 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期1-21,共21页
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s... Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion. 展开更多
关键词 Reinforced Concrete Construction steel-Concrete interface Corrosion Degradation Rate ADHESION Bearing Capacity
下载PDF
Effect of interface morphology on the mechanical properties of titanium clad steel plates 被引量:5
4
作者 Ji-xiong Liu Ai-min Zhao +3 位作者 Hai-tao Jiang Di Tang Xiao-ge Duan Heng-yong Shui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期404-408,共5页
Interface morphology has important influence on the bond quality of titanium clad steel plates. The mechanical properties of titanium clad steel plates with wavy and straight interfaces were investigated by tensile-sh... Interface morphology has important influence on the bond quality of titanium clad steel plates. The mechanical properties of titanium clad steel plates with wavy and straight interfaces were investigated by tensile-shear tests and bending tests. The interface morphology of the plates was examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results show that the shear strength of a wavy interface is higher than that of a straight interface. A wavy interface is the guarantee for obtaining high shear strength to provide a greater shear resistance. During the maerobending process, cracks appear in the swirl of the wave tip and ferrotitanium intermetallies. For in-situ observing the bending process by SEM, the wave tip of a wavy interface and the massive ferrotitartium intermetallies of a straight interface are places where cracks initiate and propagate. The results are the same as those observed in the macrobending process. Became of high hardness, the wave tip and the massive ferrotitanium intermetallies are hard in terms of compatible deformation. 展开更多
关键词 clad metals CLADDING TITANIUM low carbon steel interfaces MORPHOLOGY mechanical properties
下载PDF
Study on the interface of direct hot rolling titanium-clad steel plates 被引量:7
5
作者 SUN Jifeng LIANG Xiaojun JIAO Sihai 《Baosteel Technical Research》 CAS 2017年第1期32-39,共8页
In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC... In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC,and a Si-enriched layer on the bonding strength was clarified, and an industrial-scaled titanium-clad steel plate with shear strength over 200 MPa was produced with a carefully set schedule accordingly. It was found that hot rolling titanium-clad steel plates had a flat interface without obvious cracks. In the rolling process,both Ti and Fe atoms interdiflhsed,but Fe difthsed much faster than Ti. The Fe-diffused area consisted of three regions. After a high temperature heat treatment, the diffusion depth of Fe and Ti elements increased significantly and evident Si segregation and TiFe layers were identified. Thermal cracking initiated in the Si segregation layer and then propagated along the TiFe layer and Fe-diffused layer on the titanium side. 展开更多
关键词 titanium-clad steel plate interface DIFFUSION heat treatment
下载PDF
An interface shear damage model of chromium coating/steel substrate under thermal erosion load 被引量:6
6
作者 Xiao-long Li Yong Zang +3 位作者 Yong Lian Min-yu Ma Lei Mu Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期405-415,共11页
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e... The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 展开更多
关键词 Cr coating/steel substrate Thermal erosion Finite element simulation Ultimate shear strength interface shear damage model
下载PDF
Bond Performance of Adhesively Bonding Interface of Steel-Bamboo Composite Structure 被引量:3
7
作者 Jialiang Zhang Zhenwen Zhang +2 位作者 Keting Tong Jianmin Wang Yushun Li 《Journal of Renewable Materials》 SCIE EI 2020年第6期687-702,共16页
The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steel... The steel-bamboo composite structure is a newly developed structure,combining phyllostachys pubescens(also called Moso bamboo)plywood and cold-formed thin-walled steel with structural adhesive.The reliability of steelbamboo interface is the premise of composite effect.13 specimens were prepared to investigate the failure modes and mechanism of the steel-bamboo interface on the basis of push-out test,and the strain difference analysis method was proposed to study the distribution of shear stress.The results show that the main failure modes of steel-bamboo interface are adhesion failure and splitting of bamboo plywood.The shear stress is not evenly distributed along the longitudinal direction of the interface,showing a shape of“larger at two ends and smaller in the middle”.The lower end of the interface is the initial location of the interface failure and the shear stress concentration degree is positively correlated with the thickness of the externally bonded bamboo plate.The shear resistance of steel-bamboo interface can be enhanced by improving the adhesion between steel and structural adhesive and ameliorating the quality of bamboo products. 展开更多
关键词 Cold-formed thin-walled steel bamboo plywood strain difference steel-bamboo interface push-out test
下载PDF
Numerical Investigation on Fracture Initiation Properties of Interface Crack in Dissimilar Steel Welded Joints 被引量:1
8
作者 Longfei Zhao Chendong Shao +2 位作者 Yasuhito Takashima Fumiyoshi Minami Fenggui Lu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第3期142-149,共8页
Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the c... Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures. 展开更多
关键词 Dissimilar steel welded joint Fracture initiation interface Strength mismatch Numerical simulation
下载PDF
Bonding interface morphology of keyholeless friction stir spot welded joint of AZ31B Mg alloy and DP600 galvanized steel 被引量:1
9
作者 刘骁 赵凤玲 +3 位作者 牛红伟 陈阳 王晨阳 李小平 《China Welding》 CAS 2021年第4期42-50,共9页
Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be direct... Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be directly observed.If the joint is separated by external force,the original features of bonding interface of joint will be destroyed,which has influence on the accuracy for observation and analysis of the result.In this paper,the coordinates of the key point at the interface of every cross-section at intervals of 0.2 mm were measured and connected into an outline.The outline of all interfaces makes up the three-dimensional morphologies of bonding interface between AZ31 B Mg alloy and DP600 steel by KFSSW,which was constructed by Solidworks software to restore the real mechanical bonding state of joint.Combined with the microhardness analysis of cross-section and results of in-situ tensile test,the unique bonding state and morphology of Mg and steel in the welded joint were confirmed. 展开更多
关键词 keyholeless friction stir spot welding Mg/steel bonding interface morphology MICROHARDNESS in-situ tensile
下载PDF
TiN/γ-Fe interface orientation relationship and formation mechanism of TiN precipitates in Mn18Cr2 steel
10
作者 Zheng-hui Wang Jing-pei Xie +3 位作者 Qian Li Wen-yan Wang Ai-qin Wang Pei Liu 《China Foundry》 SCIE CAS 2021年第3期180-184,共5页
A Mn18Cr2 steel containing TiN precipitates was fabricated by vacuum induction melting.The morphology of TiN precipitates and the interface orientation relationship between TiN and γ-Fe were characterized by means of... A Mn18Cr2 steel containing TiN precipitates was fabricated by vacuum induction melting.The morphology of TiN precipitates and the interface orientation relationship between TiN and γ-Fe were characterized by means of SEM,TEM and SAED,and the formation mechanism of TiN precipitates in Mn18Cr2 steel was clarified.Results show that the TiN precipitates are more likely to exhibit a cubic-shaped morphology and form both within the grain and at the grain boundary of γ-Fe.The interface orientation relationship between TiN and γ-Fe is determined as follows:(100)_(TiN)//■_(γ-Fe),■_(TiN)//■_(γ-Fe).Because of the smallest interfacialmisfit,the secondary close-packed lane {100} of TiN preferentially combines with the close-packed plane {111} of γ-Fe during the precipitation in order to minimize the interface energy.After nucleation,the TiN precipitates exhibit cubic appearance due to the fact that the TiN has a FCC structure with rock salt type structure.This study provides reference for the material design of the austenitic high-manganese steels with excellent yield strength. 展开更多
关键词 Mn18Cr2 steel TiN precipitates interface orientation relationship interface misfit
下载PDF
Effects of Ca(Y)-Si modifier on interface morphology and solute segregation during directional solidification of an austenite medium Mn steel
11
作者 Gaofei Liang Zhenming Xu Jianguo Li 《Journal of University of Science and Technology Beijing》 CSCD 2005年第4期335-339,共5页
The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) in... The austenite medium Mn steel modified with controlled additions of Ca, Y, Si were directionally solidified using the vertical Bridgman method to study the effects of Ca(Y)-Si modifier on the solid-liquid (S-L) interface morphology and solute segregation. The interface morphology and the C and Mn segregation of the steel directionally solidified at 6.9 μtrn/s were investigated with an image analysis and a scanning electron microscope equipped with energy dispersive X-ray analysis. The 0.5wt% Ca-Si modified steel is solidified with a planar S-L interface. The interface of the 1.0wt% Ca-Si modified steel is similar to that of the 0.5wt% Ca-Si modified steel, but with larger nodes. The 1.5wt% Ca-Si modified steel displays a cellular growth parttern. The S-L interface morphology of the 0.5wt% Ca-Si+1.0wt% Y-Si modified Mn steel appears as dendritic interface, and primary austenite dendrites reveal developed lateral branching at the quenched liquid. In the meantime, the independent austenite colonies are formed ahead of the S-L interface. A mechanism involving constitutional supercooling explains the S-L interface evolution. It depends mainly on the difference in the contents of Ca, Y, and Si ahead of the S-L interface. The segregation of C and Mn ahead of the S-L interface enhanced by the modifiers is observed. 展开更多
关键词 austenite Mn steel modification solid-liquid (S-L) interface morphology solute segregation directional solidification
下载PDF
Wave Processes and Mass Transfer on the Copper-Stainless Steel Interface under Solid Phase Bonding by High-Temperature Rolling
12
作者 Boris V. Borts Aleksander A. Parkhomenko +1 位作者 Igor O. Vorobyov Alexander A. Lopata 《Open Journal of Metal》 2018年第4期67-74,共8页
The paper presents the study of hierarchy of deformation wave-processes from nano- to macro-structural level, which takes place in dissimilar materials, bonded by high-temperature vacuum rolling in solid phase. The fo... The paper presents the study of hierarchy of deformation wave-processes from nano- to macro-structural level, which takes place in dissimilar materials, bonded by high-temperature vacuum rolling in solid phase. The focus was on the processes that occur on the interface of the bonded materials: mass trasfer of impurities and alloying elements stimulated by deformation, the study of nano- and micro-hardness. 展开更多
关键词 Vacuum Hot ROLLING Solid Phase interface Cupper-Stainless steel Microscopy Micro-Hardness Nano-Hardness Wave Processes SCALING
下载PDF
Effect of Metallurgical Behaviour at the Interface between Ceramic and Interlayer on the Si_3N_4/1.25Cr-0.5Mo Steel Joint Strength
13
作者 Huaping XIONG (Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第1期20-24,共5页
By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm... By using newly developed CuNi5~25Ti16~28 B rapldly solidifled brazing filler the joining of Si3 N4/1.25Cr-0.5Mo steel has been carried out with interlayer method. If employing the interlayer structure of steel (0.2 mm)/W (2.0 mm)/Ni(0.2 mm), the joint strength can be increased greatly compared with employing that of Ni/W/Ni, and the three point bend strength of the Joint shows the value of 261 MPa. The metallurgical behaviour at the interface between Si3N4 and the interlayer has been studied. It is found that Fe participated in the interfacial reactions between Si3N4 and the brazing filler at the Si3N4/steel (0.2 mm) interface and the compound Fe5Si3 was produced. However, since the reactions of Fe with the active Ti are weaker than those of Ni with Ti, the normal inter facial reactions were still assured at the interface of Si3N4/steel (0.2 mm) instead of Si3N4/Ni (0.2 mm), resulting in the improvement of the joint strength. The mechanism of the formation of Fe5Si3 is also discussed. Finally, some ideas to further ameliorate and simplify the interlayer structure are put forward. 展开更多
关键词 SI Effect of Metallurgical Behaviour at the interface between Ceramic and Interlayer on the Si3N4/1.25Cr-0.5Mo steel Joint Strength Ni Cr Mo
下载PDF
Study on Interface mechanical behavior of steel tube reinforced concrete composite pile
14
作者 ZHAO Jiehao 《International English Education Research》 2016年第4期93-94,共2页
关键词 钢管混凝土桩 界面力学 复合桩 行为研究 力学性能 打浆性能 复合界面 超声散斑
下载PDF
Interface failure of segmental tunnel lining strengthened with steel plates based on fracture mechanics
15
作者 Yazhen SUN Yang YU +1 位作者 Jinchang WANG Longyan WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第1期137-149,共13页
Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deforma... Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deformation characteristics,making it difficult to accurately analyze the strengthened structure’s failure mechanism.In this study,interfacial fracture mechanics of composite material was applied to the segmental tunnel lining strengthened with steel plates,and a numerical three-dimensional solid nonlinear model of the lining structure was established,combining the extended finite element method with a cohesive-zone model to account for the discontinuous deformation characteristics of the interface.The results accurately describe the crack propagation process,and are verified by full-scale testing.Next,dynamic simulations based on the calibrated model were conducted to analyze the sliding failure and cracking of the steel-concrete interface.Lastly,detailed location of the interface bonding failure are further verified by model test.The results show that,the cracking failure and bond failure of the interface are the decisive factors determining the instability and failure of the strengthened structure.The proposed numerical analysis is a major step forward in revealing the interface failure mechanism of strengthened composite material structures. 展开更多
关键词 segmental tunnel lining steel plate strengthening connecting interface cohesive-zone model extended finite element method
原文传递
Interfacial Microstructure of Diffusion Bonded Inconel 738 and Ferritic Stainless Steel Couple 被引量:4
16
作者 Bulent Kurt Mustafa Ulutan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期527-530,共4页
In this study, Inconel 738 alloy was diffusion bonded to a ferritic stainless steel. The effect of bonding temperature on the microstructural development across the joint region was investigated. Following the diffusi... In this study, Inconel 738 alloy was diffusion bonded to a ferritic stainless steel. The effect of bonding temperature on the microstructural development across the joint region was investigated. Following the diffusion bonding, conventional characterization techniques such as scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and microhardness were used to examine the interracial microstructure. It was seen that bonding temperature was effective on the diffusion of Ni from Inconel 738 to ferritic stainless steel that affected the microstructure of the interface. Austenite phase was formed at the interface as a result of Ni diffusion from the Inconel 738 to the interface. 展开更多
关键词 Diffusion bonding Inconel 738 Ferritic stainless steel interface
下载PDF
Effect of MgO-Cr_(2)O_(3) and Mg0-MgAl_(2)0_(4)-based refractories on refractory-steel interface reaction and cleanliness of pipeline steel
17
作者 Guang-mei Yang Cheng Yuan +4 位作者 Chang Liu Qiang Wang Guang-qiang Li Yong-shun Zou Ao Huang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第4期849-860,共12页
The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of tot... The interaction of MgO-MgAl_(2)O_(4)-based and MgO-Cr_(2)O_(3)-based refractories with X70 molten steel was studied by immersion experiments at 1560℃.The effects of immersion time(30 and 60 min)on the contents of total oxygen(TO),Al,Nb,Si,Mn,and Cr as well as the composition,number density,and size distribution of inclusions in the molten steel were investigated.The influence of the penetration and erosion degree of the molten steel to the refractory on the steel-refractory interface layer was analyzed.The results show that,at 1560℃,the MgO-MgAl_(2)O_(4)-based refractory can better control the contents of TO and the composition of molten steel compared with the MgO-Cr_(2)O_(3)-based refractory.The TO content is only 16×10^(-4) wt.%in the molten steel after reacted with the Mg0-MgAl_(2)O_(4)-based refractory at the end point of refining,4 accounting for 11.5%of that reacted with the MgO-Cr_(2)O_(3)-based refractory(139×10^(-4) wt.%).The number density of inclusions is only 14 mm^(-2),and the average size ofinclusions is only 1.31μm,with thelargest proportion of inclusions in 1-2μm(70%).The Al_(2)O_(3)-MnS-CaO complex inclusions in the original steel changed to complex inclusions dominated by Cr-Nb-Mn-S-O and MgO.Al_(2)O_(3),corresponding to the MgO-Cr_(2)O_(3)-based and MgO-MgAl_(2)O_(4)-based refractories,respectively.The MgO.Al_(2)O_(3) layer was formed at the reaction interface between MgO-MgAl_(2)O_(4)-based refractory and molten steel,which is helpful to restrict the erosion of refractories and the pollution of molten steel.The damage mechanism of the MgO-Cr_(2)O_(3)-based refractory is mainly permeation and chemical reaction,while the damage of the MgO-MgAl_(2)O_(4)-based refractory is mainlyscouring erosion. 展开更多
关键词 MgO-Cr_(2)O_(3)-based refractory MgO-MgAl O_(4)-based refractory Nonmetallic inclusion Erosion interface layer steel penetration
原文传递
Interfacial microstructure and property of resistance spot welding joints of titanium to stainless steel 被引量:2
18
作者 张晓娇 邱然锋 +2 位作者 张柯柯 代乐宜 石红信 《China Welding》 EI CAS 2013年第2期43-48,共6页
Commercially pure titanium and stainless steel sheets were welded using the technique of resistance spot welding with an aluminum alloy insert. The interfacial microstructure of the joint was observed and analyzed usi... Commercially pure titanium and stainless steel sheets were welded using the technique of resistance spot welding with an aluminum alloy insert. The interfacial microstructure of the joint was observed and analyzed using electron microscopy; the tensile shear strength was investigated. An approximate 160 nm thick layer of Al solid solution supersaturated with Ti was observed at the interface between titanium and aluminum alloy. The solid solution layer contained the precipitates TiAla. And an approximate 1. 5 μm thick serrate reaction layer was observed at the interface between stainless steel and aluminum alloy. The maximum tensile shear load of 5.38 kN was obtained from the joint welded at the welding current of 10 kA. The results reveal that the property of the joint between titanium and stainless steel can be improved by using an aluminum alloy insert. 展开更多
关键词 resistance spot welding TITANIUM stainless steel interface microstructure
下载PDF
High strength bimetallic composite material fabricated by electroslag casting and characteristics of its composite interface 被引量:1
19
作者 Tian-shun Dong Jin-hai Liu +2 位作者 Qian Fang Guo-lu Li Jian-jun Zhang 《China Foundry》 SCIE 2016年第6期389-395,共7页
Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy d... Bimetallic composite material of bainitic steel and PD3 steel was produced with electroslag casting process, and element distribution of its composite interface was investigated by theoretical calculation and energy dispersive spectrometer(EDS). Results show that the tensile strength(1,450 MPa), hardness(HRC 41-47) and impact toughness(94.7J·cm^(-2)) of bainitic steel were comparatively high, while its elongation was slightly low(4.0%). Tensile strength(1,100 MPa), hardness(>HRC 31) and elongation(7.72%) of the interface were also relatively high, but its impact toughness was low at 20.4 J·cm^(-2). Results of theoretical calculation of the element distribution in the interface region were basically consistent with that of EDS. Therefore, electroslag casting is a practical process to produce bimetallic composite material of bainitic steel and PD3 steel, and theoretical calculation also is a feasible method to study element distribution of their interface. 展开更多
关键词 electroslag casting bimetallic composite material bainitic steel interface
下载PDF
Influence of laser energy input mode on joint interface characteristics in laser brazing with Cu-base filler metal 被引量:4
20
作者 李俐群 封小松 陈彦宾 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第5期1065-1070,共6页
The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes.The microstructures and element distributions of joint interface were investigated b... The flange butt joints of 1 mm-thick galvanized steel sheets were brazed with CuSi3 as filler metal at different laser heating modes.The microstructures and element distributions of joint interface were investigated by SEM and EDS.The results show that there is no obvious interface layer with the circular individual beam heating and lamellar Fe-Si intermetallic compound layer is found with dual-beam laser spot heating.With the irradiation of rectangular laser spot,the joint interface layer is also formed.The layer thickness is larger than that of dual-beam brazing and the layer shape is flat so that intermetallic compounds trend to grow into cellular crystals.Moreover,the interface layer shape also depends on its position in the joint.Under the high heat input,dendritic or granular intermetallic compounds dispersively distribute in brazing seam adjacent to the interface,which is caused by the melting or dissolving of the base metal.According to the results,the brazing quality can be controlled by laser heating mode and processing parameters. 展开更多
关键词 激光铜焊法 接口特征 激光能量输入模式 焊接技术 镀锌钢
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部