期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
1
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 high-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
Flexural behavior of high-strength,steel-reinforced,and prestressed concrete beams 被引量:1
2
作者 Qing JIANG Hanqin WANG +2 位作者 Xun CHONG Yulong FENG Xianguo YE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第1期227-243,共17页
To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforce... To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete,12 specimens were tested under static loading.The failure modes,flexural strength,ductility,and crack width of the specimens were analyzed.The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete.A brittle failure did not occur in the specimens.To further understand the working mechanism,the results of other experimental studies were collected and discussed.The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength.The cracking-and peak-moment formulas in the code for the design of concrete(GB 50010-2010)applied to the beams were both found to be acceptable.However,the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative.In the context of GB 50010-2010,a revised formula for the crack width is proposed with modifications to two major factors:the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing.The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017,which is better than the calculation result from GB 50010-2010.Therefore,the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members.Finally,finite element models were established using ADINA software and validated based on the test results.This study provides an important reference for the development of high-strength concrete and highstrength steel reinforcement structures. 展开更多
关键词 high-strength steel reinforcement high-strength concrete flexural behavior crack width
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部