Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel sl...Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.展开更多
The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties wer...The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties were studied when the aggregate was applied to concrete. The: result shows that the aggregate has special advantages of hardness and wear-resistance, so it can be used as an excellent road surface material. The concrete mixed with the steel slag special fine aggregate exhibits good mechanical properties and working properties,which is safe and reliable.展开更多
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
Hydration heat evolution, non-evaporative water, setting time and SEM tests were peorormed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism. The results...Hydration heat evolution, non-evaporative water, setting time and SEM tests were peorormed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism. The results show that the effect of fine steel slag powder on the hydration process of Portland cement is closely related to its chemical composition, mineral phases, fineness, etc. Fine steel slag powder retards the hydration of portland cement at early age. The major reason for this phenomenon is the relative high content of MgO , MnO2, P2O5 in steel slag, and MgO solid solved in C3 S contained in steel slag.展开更多
Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternat...Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternative to natural sources.In this study,granite aggregates in asphaltic mixes were replaced by electric arc furnace(EAF)steel slag aggregates with different proportions to identify the best combination in terms of superior performance.Asphalt mixtures showing the best performance were further reinforced with polyvinyl alcohol(PVA),acrylic,and polyester fibers at the dosages of 0.05%,0.15%,and 0.3%by weight of the aggregates.The performance tests of this study were resilient modulus,moisture susceptibility,and indirect tensile fatigue cracking test.The findings of this study revealed that the asphalt mixtures containing coarse steel slag aggregate exhibited the best performance in comparison with the other substitutions.Moreover,the reinforced asphalt mixtures with synthetic fibers at the content of 0.05%exhibited an almost comparable performance to the unreinforced asphalt mixtures.Modifying the asphalt mixtures with PVA,acrylic,and polyester fibers at the proportion of 0.15%have improved the fatigue cracking resistance by 41.13%,29.87%,and 18.97%,respectively.Also,the fiber-modified asphalt mixtures with PVA,acrylic,and polyester have enhanced the fatigue cracking resistance by about 57%,44%,and 39%,respectively.The results of the resilient modulus demonstrated that as the fiber content increase,the resilient modulus of the reinforced asphalt mixtures decreases.Therefore,introducing synthetic fibers at the content of 0.3%has slightly decreased the resilient modulus in comparison with unreinforced mixtures.On the other hand,the results of the mechanisticempirical pavement design showed that the reinforced asphalt mixes with a high content of synthetic fibers have shown lower service life than the control mixes due to the low resilient modulus.On the contrary,based on the laboratory results,the asphalt mixes incorporating PVA,acrylic,and polyester fibers at the proportion of 0.15%have shown the potential to reduce the thickness of the asphalt layer by about 14.9%,11.80%,and 8.70%,respectively.展开更多
To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental...To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.展开更多
In order to increase use ratio of steel slag solid waste,the concrete containing steel slag powder and zeolite powder as admixtures was prepared by using the orthogonal test method.The effects of water-binder ratio,s...In order to increase use ratio of steel slag solid waste,the concrete containing steel slag powder and zeolite powder as admixtures was prepared by using the orthogonal test method.The effects of water-binder ratio,sand ratio,steel slag powder content and zeolite powder on working properties,mechanical strength and chloride ion permeability of the concrete was studied.It was found that the early strength of the concrete had a decrease with the mixing of steel slag and zeolite powders,but its later strength approached to pure concrete.Moreover,the physical filling and pozzolanic activity of the admixtures increased the density of the concrete,resulting in the improvement of the durability of the concrete by the migration speed of Cl−reducing.The optimum mix ratio of C40 steel slag powder-zeolite powder concrete is obtained,and which had the slump of 220 mm,the 3 d,7 d and 28 d compressive strengths of 27.8 MPa,37.5 MPa and 48.4 MPa,the 6 h electric flux of 950 C and the diffusion coefficient of 1.65×10−12 m2/s.展开更多
The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag(GGBFS) alone or with a ...The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag(GGBFS) alone or with a combined admixture of GGBFS-steel slag powder were investigated by X-ray diffraction(XRD). Furthermore, the mechanism of chemically activated steel slag powder was also studied. The experimental results showed that when steel slag powder was added to concrete, the slumps through the same time were lower. The initial and fi nal setting times were slightly retarded. The dry shrinkages were lower, and the abrasion resistance was better. The chemically activated steel slag powder could improve compressive strengths, resistance to chloride permeation and water permeation, as well as carbonization resistance. XRD patterns indicated that the activators enhanced the formation of calcium silicate hydrate(C-S-H) gel and ettringite(AFt). This research contributes to sustainable disposal of wastes and has the potential to provide several important environmental benefi ts.展开更多
In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag ...In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag powder and mineral powder(limestone powder)were compared by scanning electron microscope(SEM),and the high-temperature rheological properties of asphalt mortar with difierent ratio of filler quality to asphalt quality(F/A)and difierent substitution rates of mineral powder(S/F)were studied by dynamic shear rheological test.The results show that the surface microstructure of steel slag powder is more abundant than that of mineral powder,and the adhesion of steel slag to asphalt is better than that of limestone.At the same temperature,the lower the ratio of S/F is,the greater the rutting factor and complex modulus will be.In addition,the complex modulus and rutting factor of the asphalt mortar increase with the increase of F/A,and the filler type and F/A have a negligible efiect on the phase angle.展开更多
The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most o...The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.展开更多
Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed th...Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed that when CO_2 &H_2O was used,the free-calcium oxide(f-CaO) content in converter slag decreased significantly and after an-hour treatment the f-CaO content was reduced to 3%;however,when only treated by H_2O without CO_2, f-CaO needed 3-hour stabilization to decrease its content to 3%.When f-CaO in converter slag powder was treated by CO_2 &H_2O,its main reaction products were CaCO_3 and then Ca(OH)_2;however,when only H_2O was used, the f-CaO content decreased gently and the main products were Ca(OH)_2.展开更多
Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali...Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction(AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete. In addition,about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.展开更多
Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,ec...Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,economical and administrative challenges in developing sustainable treatments and use of by-products. Due to availability of good natural construction materials,the use of slag and other industrial by-products has been quite small in Northern Europe.Blast furnace slag has been completely utilized,while slag from stainless steel processes has earlier been regarded as waste.Steering of the metallurgical melt phase,slag cooling,treatment and metal recovery processes are the main technical challenges for increasing the sustainable use of stainless steel slag. Moreover,product properties have to fulfill standards and customer requirements.Dry or water-cooled EAF slag aggregates are typically used in road construction.Outokumpu has developed light mineral slag aggregates which are cooled in rapid water process.During this process,a specific structure and mineralogy is formed in the slag and leaching from the material decreases.In many regulatory discussions,it seems that there is not enough relevant scientific data from harmful compounds.Limit values are based only on laboratory tests and model estimations,not on the material use itself or real nature.A risk-based approach is needed when environmental acceptance is not clear.Limit values based on content are not applicable because environmental or health risks depend on the release or leaching of substances from the material.This is the case especially with metals.展开更多
Microsurfacing has recently been accepted widely as an effective method for preventive maintenance of pavements.Microsurfacing is a mixture of cationic polymer-modified bitumen emulsion,100%manufactured well-graded fi...Microsurfacing has recently been accepted widely as an effective method for preventive maintenance of pavements.Microsurfacing is a mixture of cationic polymer-modified bitumen emulsion,100%manufactured well-graded fine aggregate,mineral filler,water,and chemical additives.In this research,in order to evaluate the performance of steel slag in microsurfacing mixture,two types of bitumen emulsions(cationic quick setting and cationic slow setting)were used together with three types of mixtures in which 100%siliceous aggregate was used as a control mixture and then steel slag was replaced by 61%and 100%aggregate of control mixture.The performance of the samples was evaluated by experiments included wet cohesion test,wet track abrasion test,and loaded wheel test,according to international slurry surfacing association(ISSA)A143 guideline and ASTM D6372 standard.The results of tests showed that steel slag aggregate has proper compatibility with both of bitumen emulsion types judged by its desirable physical,chemical,and mechanical properties.The alkali characteristic of the steel slag leads to a stronger adhesion of these materials to acidic bitumen and cause prevented the stripping in the vicinity of water in comparison to the control mixture.Also,steel slag-containing mixtures displayed a more appropriate behavior in terms of rutting and stripping distresses.展开更多
This study investigated the effect of silica fume(SF) on mechanical properties of concrete incorporating steel slag powder(SSP). The compressive strength and splitting strength tests of concrete with different content...This study investigated the effect of silica fume(SF) on mechanical properties of concrete incorporating steel slag powder(SSP). The compressive strength and splitting strength tests of concrete with different content of SF(0%, 4%, 8% and 12%) and of SSP(0%, 10%, 20%, 30% and 40%) were carried out, and the test results were analyzed and fitted. Obtained results showed that the brittleness, compressive strength and compressive strength discreteness of concrete increased due to the incorporation of SF. SSP weakened the compressive strength of concrete, which reduced within 10% when the content of SSP was less than 20%. SF and SSP showed synergistic hydration effect when they were mixed, and the optimal group was SF8 SSP30, whose compressive strength was close to that of plain concrete, and whose brittleness as well as discreteness of compressive strength were lower relatively. With the content of SSF and of SSP as variables, the tension-compression ratio and compressive strength of concrete can be well estimated by surface fitting.展开更多
基金the National Natural Science Foundation of China (No.50678139)
文摘Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.
文摘The physical properties, grading stability and application stability of the steel slag special fine aggregate (diameter≤0. 8mm) at Baosteel were analyzed in this study, and the mechanical and working properties were studied when the aggregate was applied to concrete. The: result shows that the aggregate has special advantages of hardness and wear-resistance, so it can be used as an excellent road surface material. The concrete mixed with the steel slag special fine aggregate exhibits good mechanical properties and working properties,which is safe and reliable.
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
基金Funded by National 973 Project (No.2001CB610704-2)
文摘Hydration heat evolution, non-evaporative water, setting time and SEM tests were peorormed to investigate the effect of fine steel slag powder on the hydration process of Portland cement and its mechanism. The results show that the effect of fine steel slag powder on the hydration process of Portland cement is closely related to its chemical composition, mineral phases, fineness, etc. Fine steel slag powder retards the hydration of portland cement at early age. The major reason for this phenomenon is the relative high content of MgO , MnO2, P2O5 in steel slag, and MgO solid solved in C3 S contained in steel slag.
基金This work was supported by Universiti Tenaga Nasional(UNITEN)through BOLD Refresh Publication Fund 2021 under Grant J5100D4103-BOLDREFRESH2025-CENTRE OF EXCELLENCE.
文摘Vigorous and continued efforts by researchers and engineers have contributed towards maintaining environmental sustainability through the utilization of waste materials in civil engineering applications as an alternative to natural sources.In this study,granite aggregates in asphaltic mixes were replaced by electric arc furnace(EAF)steel slag aggregates with different proportions to identify the best combination in terms of superior performance.Asphalt mixtures showing the best performance were further reinforced with polyvinyl alcohol(PVA),acrylic,and polyester fibers at the dosages of 0.05%,0.15%,and 0.3%by weight of the aggregates.The performance tests of this study were resilient modulus,moisture susceptibility,and indirect tensile fatigue cracking test.The findings of this study revealed that the asphalt mixtures containing coarse steel slag aggregate exhibited the best performance in comparison with the other substitutions.Moreover,the reinforced asphalt mixtures with synthetic fibers at the content of 0.05%exhibited an almost comparable performance to the unreinforced asphalt mixtures.Modifying the asphalt mixtures with PVA,acrylic,and polyester fibers at the proportion of 0.15%have improved the fatigue cracking resistance by 41.13%,29.87%,and 18.97%,respectively.Also,the fiber-modified asphalt mixtures with PVA,acrylic,and polyester have enhanced the fatigue cracking resistance by about 57%,44%,and 39%,respectively.The results of the resilient modulus demonstrated that as the fiber content increase,the resilient modulus of the reinforced asphalt mixtures decreases.Therefore,introducing synthetic fibers at the content of 0.3%has slightly decreased the resilient modulus in comparison with unreinforced mixtures.On the other hand,the results of the mechanisticempirical pavement design showed that the reinforced asphalt mixes with a high content of synthetic fibers have shown lower service life than the control mixes due to the low resilient modulus.On the contrary,based on the laboratory results,the asphalt mixes incorporating PVA,acrylic,and polyester fibers at the proportion of 0.15%have shown the potential to reduce the thickness of the asphalt layer by about 14.9%,11.80%,and 8.70%,respectively.
基金Funded by the Guide Project in National Science & Technology Pillar Program during the 10th Five-Year Plan Period (2003BA652C)
文摘To decrease the cement and SF content of RPC by using ultra-fine fly ash (UFFA) and steel slag powder (SS), the effect of these mineral admixtures on compressive strength of RPC were investigated. The experimental results indicate that the utilization of UFFA and SS in RPC is feasible and has prominent mechanical performance. The microstructure analysis (SEM and TG-DTG-DSC) demonstrated that the excellent mechanical properties of RPC containing SS and UFFA were mainly attributed to the sequential hydration filling effect of the compound system.
基金This work was supported by the Gui Ke Neng(19-J-21-7 and 19-J-21-12).
文摘In order to increase use ratio of steel slag solid waste,the concrete containing steel slag powder and zeolite powder as admixtures was prepared by using the orthogonal test method.The effects of water-binder ratio,sand ratio,steel slag powder content and zeolite powder on working properties,mechanical strength and chloride ion permeability of the concrete was studied.It was found that the early strength of the concrete had a decrease with the mixing of steel slag and zeolite powders,but its later strength approached to pure concrete.Moreover,the physical filling and pozzolanic activity of the admixtures increased the density of the concrete,resulting in the improvement of the durability of the concrete by the migration speed of Cl−reducing.The optimum mix ratio of C40 steel slag powder-zeolite powder concrete is obtained,and which had the slump of 220 mm,the 3 d,7 d and 28 d compressive strengths of 27.8 MPa,37.5 MPa and 48.4 MPa,the 6 h electric flux of 950 C and the diffusion coefficient of 1.65×10−12 m2/s.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Fundamental Research Funds for the Central Universities(No.0500219170)
文摘The workability and durability of a type of sustainable concrete made with steel slag powder were investigated. The hydrated products of cement paste with ground granulated blast furnace slag(GGBFS) alone or with a combined admixture of GGBFS-steel slag powder were investigated by X-ray diffraction(XRD). Furthermore, the mechanism of chemically activated steel slag powder was also studied. The experimental results showed that when steel slag powder was added to concrete, the slumps through the same time were lower. The initial and fi nal setting times were slightly retarded. The dry shrinkages were lower, and the abrasion resistance was better. The chemically activated steel slag powder could improve compressive strengths, resistance to chloride permeation and water permeation, as well as carbonization resistance. XRD patterns indicated that the activators enhanced the formation of calcium silicate hydrate(C-S-H) gel and ettringite(AFt). This research contributes to sustainable disposal of wastes and has the potential to provide several important environmental benefi ts.
基金Funded by National Natural Science Foundation of China(No.52278446)。
文摘In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag powder and mineral powder(limestone powder)were compared by scanning electron microscope(SEM),and the high-temperature rheological properties of asphalt mortar with difierent ratio of filler quality to asphalt quality(F/A)and difierent substitution rates of mineral powder(S/F)were studied by dynamic shear rheological test.The results show that the surface microstructure of steel slag powder is more abundant than that of mineral powder,and the adhesion of steel slag to asphalt is better than that of limestone.At the same temperature,the lower the ratio of S/F is,the greater the rutting factor and complex modulus will be.In addition,the complex modulus and rutting factor of the asphalt mortar increase with the increase of F/A,and the filler type and F/A have a negligible efiect on the phase angle.
基金Key Research and Development Plan of Shaanxi Province(2019TSLGY05-04).
文摘The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.
文摘Dry ball milling and wet ball milling were used to treat converter slag with particle size < 10 mm and the converter slag powder was stabilized by H_2O only and H_2O coupled with CO_2.respectively.Results showed that when CO_2 &H_2O was used,the free-calcium oxide(f-CaO) content in converter slag decreased significantly and after an-hour treatment the f-CaO content was reduced to 3%;however,when only treated by H_2O without CO_2, f-CaO needed 3-hour stabilization to decrease its content to 3%.When f-CaO in converter slag powder was treated by CO_2 &H_2O,its main reaction products were CaCO_3 and then Ca(OH)_2;however,when only H_2O was used, the f-CaO content decreased gently and the main products were Ca(OH)_2.
基金Project(2006BAF02A00) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject(08-2-1-18-nsh) supported by the Science and Technology Program of Qingdao City, China
文摘Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction(AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete. In addition,about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.
文摘Stainless steel melting shops of Outokumpu Group are located in Finland,Sweden and England(UK). In all of the countries the European Union legislation is the same,but in practice the plants face different technical,economical and administrative challenges in developing sustainable treatments and use of by-products. Due to availability of good natural construction materials,the use of slag and other industrial by-products has been quite small in Northern Europe.Blast furnace slag has been completely utilized,while slag from stainless steel processes has earlier been regarded as waste.Steering of the metallurgical melt phase,slag cooling,treatment and metal recovery processes are the main technical challenges for increasing the sustainable use of stainless steel slag. Moreover,product properties have to fulfill standards and customer requirements.Dry or water-cooled EAF slag aggregates are typically used in road construction.Outokumpu has developed light mineral slag aggregates which are cooled in rapid water process.During this process,a specific structure and mineralogy is formed in the slag and leaching from the material decreases.In many regulatory discussions,it seems that there is not enough relevant scientific data from harmful compounds.Limit values are based only on laboratory tests and model estimations,not on the material use itself or real nature.A risk-based approach is needed when environmental acceptance is not clear.Limit values based on content are not applicable because environmental or health risks depend on the release or leaching of substances from the material.This is the case especially with metals.
文摘Microsurfacing has recently been accepted widely as an effective method for preventive maintenance of pavements.Microsurfacing is a mixture of cationic polymer-modified bitumen emulsion,100%manufactured well-graded fine aggregate,mineral filler,water,and chemical additives.In this research,in order to evaluate the performance of steel slag in microsurfacing mixture,two types of bitumen emulsions(cationic quick setting and cationic slow setting)were used together with three types of mixtures in which 100%siliceous aggregate was used as a control mixture and then steel slag was replaced by 61%and 100%aggregate of control mixture.The performance of the samples was evaluated by experiments included wet cohesion test,wet track abrasion test,and loaded wheel test,according to international slurry surfacing association(ISSA)A143 guideline and ASTM D6372 standard.The results of tests showed that steel slag aggregate has proper compatibility with both of bitumen emulsion types judged by its desirable physical,chemical,and mechanical properties.The alkali characteristic of the steel slag leads to a stronger adhesion of these materials to acidic bitumen and cause prevented the stripping in the vicinity of water in comparison to the control mixture.Also,steel slag-containing mixtures displayed a more appropriate behavior in terms of rutting and stripping distresses.
文摘This study investigated the effect of silica fume(SF) on mechanical properties of concrete incorporating steel slag powder(SSP). The compressive strength and splitting strength tests of concrete with different content of SF(0%, 4%, 8% and 12%) and of SSP(0%, 10%, 20%, 30% and 40%) were carried out, and the test results were analyzed and fitted. Obtained results showed that the brittleness, compressive strength and compressive strength discreteness of concrete increased due to the incorporation of SF. SSP weakened the compressive strength of concrete, which reduced within 10% when the content of SSP was less than 20%. SF and SSP showed synergistic hydration effect when they were mixed, and the optimal group was SF8 SSP30, whose compressive strength was close to that of plain concrete, and whose brittleness as well as discreteness of compressive strength were lower relatively. With the content of SSF and of SSP as variables, the tension-compression ratio and compressive strength of concrete can be well estimated by surface fitting.