To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain...To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed.展开更多
基金the funding of Chongqing Application and Development Project of China(cstc2014yykfB100007)
文摘To improve the efficiency of iron recovery from steel slag and reduce the wear-and-tear on facilities, a new method was proposed by adding a secondary screen sizer to the magnetic separation process according to grain size distribution of magnetic iron (M-Fe) in the slag. The final recycling efficiency was evaluated by calculating the percentage of recycled M-Fe to the maximum amount of M-Fe that could be recovered. Three types of slags, namely basic oxygen furnace slag, desul- furization slag, and iron ladle slag, were studied, and the results showed that the optimized re- covery efficieneies were 93.20%, 92. 48%, and 85.82% respectively, and the recycling efficien eies were improved by 9.58%, 7.11%, and 6.24% respectively. Furthermore, the abrasion between the mill equipment and the remaining slags was significantly reduced owing to the efficient recovery of larger M-Fe particles. In addition, the using amount of grinding balls was reduced by 0. 46 kg when every 1 t steel slag was processed.