Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily l...Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily life.The equivalent stiffness of the designed piezoelectric clip‑like spring is thoroughly researched and discussed through the theoretical model,the finite element simulation and the experimental measurement.The results confirm the possibility of designing a compact piezoelectric clip‑like spring,and the equivalent stiffness can be tuned through the several key geometric parameters.Finally,theoretical predictions confirmed by experimental results show that the equivalent stiffness of the spring structure is as function of the instantaneous angle of the clip,this stiffness variation caused by the geometric nonlinearity can be ignored in some practical engineering applications,which means it is possible to linearize the clip‑like spring and simplify the following dynamic model of the corresponding piezoelectric oscillators.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51705251)the Introduction of Talent Research Start-up Fund of Nanjing Institute of Technology(No.YKJ201960).
文摘Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily life.The equivalent stiffness of the designed piezoelectric clip‑like spring is thoroughly researched and discussed through the theoretical model,the finite element simulation and the experimental measurement.The results confirm the possibility of designing a compact piezoelectric clip‑like spring,and the equivalent stiffness can be tuned through the several key geometric parameters.Finally,theoretical predictions confirmed by experimental results show that the equivalent stiffness of the spring structure is as function of the instantaneous angle of the clip,this stiffness variation caused by the geometric nonlinearity can be ignored in some practical engineering applications,which means it is possible to linearize the clip‑like spring and simplify the following dynamic model of the corresponding piezoelectric oscillators.