The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the dif...The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the different strain rates in the solution were investigated, and the fracture morphologies and compositions of corrosion products under the different strain rates were analyzed with scanning electron microscopy(SEM) and energy dispersive spectrometerry(EDS), respectively. The experimental results show that the SCC sensitivity index is the highest when the strain rate is 2×10-6, and the medium corrosion is the main reason resulting in the highest SCC sensitivity index. The SCC sensitivity index is the least when the strain rate is 5×10-6, and the stress is the main reason resulting in the stress corrosion. The SCC sensitivity index is the middle when the strain rate is 9×10-6, the interaction of stress and medium is the stress corrosion fracture mechanism.展开更多
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in...Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.展开更多
Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensi...Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.展开更多
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added ...Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.展开更多
310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode...310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode for 310S stainless steel. Past researched about SCC of 310S primarily focus on the corrosion mechanism and influence of temperature and corrosive media, but few studies concern the combined influence of temperature, pressure and chloride. on SCC of 310S stainless steel, prepared samples are investigated via For a better understanding of temperature and pressure's effects slow strain rate tensile test(SSRT) in different temperature and pressure in NACE A solution. The result shows that the SCC sensibility indexes of 310S stainless steel increase with the rise of temperature and reach maximum at 10MPa and 160~C, increasing by 22.3% compared with that at 10 MPa and 80 ℃. Instead, the sensibility decreases with the pressure up. Besides, the fractures begin to transform from the ductile fracture to the brittle fracture with the increase of temperature. 310S stainless steel has an obvious tendency of stress corrosion at 10MPa and 160℃ and the fracture surface exists cleavage steps, river patterns and some local secondary cracks, having obvious brittle fracture characteristics. The SCC cracks initiate from inclusions and tiny pits in the matrix and propagate into the matrix along the cross section gradually until rupture. In particular, the oxygen and chloride play an important role on the SCC of 310S stainless steel in NACE A solution. The chloride damages passivating film, causing pitting corrosion, concentrating in the cracks and accelerated SSC ultimately. The research reveals the combined influence of temperature, pressure and chloride on the SCC of 310S, which can be a guide to the application of 310S stainless steel in super-heater tube.展开更多
In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel h...In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.展开更多
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃...The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.展开更多
Pitting corrosion of 316L stainless steel (316L S S) under various stress was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaC1 s...Pitting corrosion of 316L stainless steel (316L S S) under various stress was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaC1 solution. The results of polarization curves show that, with the increase of the stress, the pitting potentials and the passive current density markedly decrease firstly (180 MPa), and then increase greatly (200 MPa). The corresponding surface morphologies of the samples after the polarization test well correspond to the results. Mott-Schottky analysis proved the least C1- adsorbed to the surface of passive film with more positive flat potential, indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaC1 solution.展开更多
The stress transfer mechanism of steel fibre reinforced concrete is studied. The solutions for the stress and displacement were regarded as the superposition of ' the elementary solutions' and ' the improv...The stress transfer mechanism of steel fibre reinforced concrete is studied. The solutions for the stress and displacement were regarded as the superposition of ' the elementary solutions' and ' the improved solutions'. The elementary solutions were found by using two-dimensional elastic theory and the improved solutions were found by using the Love displacement function method. The calculated results indicate that the solutions possess good convergence. By comparing the three-dimensional solutions with the shear-lag solutions, evident difference may be found.展开更多
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were...The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were analyzed. New flow stress models suitable to ferrite warm forming of Ti-IF steel were given on the basis of analyzing the influence of deformation technology parameters on the flow stress.展开更多
To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress ...To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress was calculated using a simplified calculation method. The method involved welding the mixed steel U-rib-stiffened plates for a structure with different sizes and different strength ratios of U-rib to plate. Based on a welding residual stress numerical simulation method validated by the blind hole method test, the distribution law of the mixed steel U-rib stiffened plate was studied. The results showed that the change of plate width has little impact on the welding residual stress and that the ratio of the thicknesses of the plate to U-rib stiffeners, the thickness of the plate, and the thickness of the U-rib has a great influence on the distribution of the welding residual stress. The thickness of plate and steel strength also greatly influenced the distribution width of the residual tensile stress. While analyzing the compression capacity of U-rib-stiffened plates, the simplified distribution of welding residual stress was used.展开更多
The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cr...The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.展开更多
This paper provides a review of the differences between high pH and near-neutral pH stress corrosion cracking of pipeline steels, influencing factors, and mechanisms. The characteristics and historical information on ...This paper provides a review of the differences between high pH and near-neutral pH stress corrosion cracking of pipeline steels, influencing factors, and mechanisms. The characteristics and historical information on both forms of SCC are discussed. The prospect for research in the future is also presented.展开更多
This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the...This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520℃, respectively.展开更多
The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were...The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.展开更多
Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-weld...Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.展开更多
The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the q...The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the quenching temperature raised from 870 to 1200℃ . All of the fractures are intergranular.The analyses of the segregation along prior austenitic grain boundaries,grain size and other microstructural factors reveal that the inerease of K_(ISCC) is mainly due to the coarsening of prior austenitic grains.展开更多
A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual ...A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual phase (DP) steels with two different martensite volume fractions. The results show that there exist great differences in the stress-strain contribution of martensite and ferrite to DP steel. The stress-strain partitioning coefficient is not constant in the whole strain range, but decreases with increasing the true strain of DP steel. The softening effect caused by the dilution of carbon concentration in martensite with the increase of martensite volume fraction has great influence on the strain contribution of martensite. The strain ratio of ferrite to martensite almost linearly increases with increasing the true strain of DP steel when the martensite volume fraction is 22%, because martensite always keeps elastic. But the strain ratio of ferrite to martensite varies indistinctively with the further increase in true strain of DP steel above 0.034 when the martensite volume fraction is 50%, because plastic deformation happens in martensite. The stress ratio ofmartensite to ferrite decreases monotonously with increasing the true strain of DP steel whether the martensite volume fraction is 22% or 50%.展开更多
In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a &...In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.展开更多
基金Funded by the Key Research and Development Project of Jiangsu Province(BE2016052)
文摘The stress corrosion of S355 steel in 3.5% NaCl solution under the different strain rates was analyzed with the slow strain rate test(SSRT), the stress corrosion cracking(SCC) behaviors of S355 steel under the different strain rates in the solution were investigated, and the fracture morphologies and compositions of corrosion products under the different strain rates were analyzed with scanning electron microscopy(SEM) and energy dispersive spectrometerry(EDS), respectively. The experimental results show that the SCC sensitivity index is the highest when the strain rate is 2×10-6, and the medium corrosion is the main reason resulting in the highest SCC sensitivity index. The SCC sensitivity index is the least when the strain rate is 5×10-6, and the stress is the main reason resulting in the stress corrosion. The SCC sensitivity index is the middle when the strain rate is 9×10-6, the interaction of stress and medium is the stress corrosion fracture mechanism.
基金supported by the National Science & Technology Infrastructure Development Program of China(No.2005DKA10400)
文摘Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip.
文摘Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HC03 at a passive potential of-0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HC03 were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhunced susceptibility to SCC with the concentration of HCO3 increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO3 not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO3 for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB605005)Shanghai Municipal Committee of Science and Technology of china(Grant No. 005207019,Grant No. 08520708000)
文摘Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700℃ for 30 h showed little effect on the S CC of 316LN S S and significant effect on the S CC of 316 S S. The predominant cracking mode for the 316LN S S in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB013401)General Administration of Quality Supervision,Inspection and Quarantine of China(Grant No.2011QK235)
文摘310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode for 310S stainless steel. Past researched about SCC of 310S primarily focus on the corrosion mechanism and influence of temperature and corrosive media, but few studies concern the combined influence of temperature, pressure and chloride. on SCC of 310S stainless steel, prepared samples are investigated via For a better understanding of temperature and pressure's effects slow strain rate tensile test(SSRT) in different temperature and pressure in NACE A solution. The result shows that the SCC sensibility indexes of 310S stainless steel increase with the rise of temperature and reach maximum at 10MPa and 160~C, increasing by 22.3% compared with that at 10 MPa and 80 ℃. Instead, the sensibility decreases with the pressure up. Besides, the fractures begin to transform from the ductile fracture to the brittle fracture with the increase of temperature. 310S stainless steel has an obvious tendency of stress corrosion at 10MPa and 160℃ and the fracture surface exists cleavage steps, river patterns and some local secondary cracks, having obvious brittle fracture characteristics. The SCC cracks initiate from inclusions and tiny pits in the matrix and propagate into the matrix along the cross section gradually until rupture. In particular, the oxygen and chloride play an important role on the SCC of 310S stainless steel in NACE A solution. The chloride damages passivating film, causing pitting corrosion, concentrating in the cracks and accelerated SSC ultimately. The research reveals the combined influence of temperature, pressure and chloride on the SCC of 310S, which can be a guide to the application of 310S stainless steel in super-heater tube.
基金supported by the National Natural Science Foundation of China(Grant No.51009093)
文摘In the present study, the dynamic and fatigue characteristics of two types of stress joints are investigated under ocean environmental condition. Connected with the riser and the platform, stress joint at the vessel hang-off position should be one of the main critical design challenges for a steel catenary riser (SCR) in deepwater. When the riser is under a high pressure and deepwater working condition, the stress state for the joint is more complex, and the fatigue damage is easy to occur at this position. Stress joint discussed in this paper includes two types: Tapered Stress Joint (TSJ) and Sleeved Stress Joint (SSJ), and multiaxial fatigue analysis results are given for comparison. Global dynamic analysis for an SCR is performed first, and then the local boundary conditions obtained from the previous analysis are applied to the stress joint FE model for the later dynamic and multiaxial fatigue analysis. Results indicate that the stress level is far lower than the yield limit of material and the damage induced by fatigue needs more attention. Besides, the damage character of the two types of stress joints differs: for TSJ, the place where the stress joint connects with the riser is easy to occur fatigue damage; for SSJ, the most probable position is at the place where the end of the inner sleeve pipe contacts with the riser body. Compared with SSJ, TSJ shows a higher stress level but better fatigue performance, and it will have a higher material cost. In consideration of various factors, designers should choose the most suitable type and also geometric parameters.
文摘The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.
基金Funded by the National Natural Science Foundation of China(No.50871020)
文摘Pitting corrosion of 316L stainless steel (316L S S) under various stress was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaC1 solution. The results of polarization curves show that, with the increase of the stress, the pitting potentials and the passive current density markedly decrease firstly (180 MPa), and then increase greatly (200 MPa). The corresponding surface morphologies of the samples after the polarization test well correspond to the results. Mott-Schottky analysis proved the least C1- adsorbed to the surface of passive film with more positive flat potential, indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaC1 solution.
文摘The stress transfer mechanism of steel fibre reinforced concrete is studied. The solutions for the stress and displacement were regarded as the superposition of ' the elementary solutions' and ' the improved solutions'. The elementary solutions were found by using two-dimensional elastic theory and the improved solutions were found by using the Love displacement function method. The calculated results indicate that the solutions possess good convergence. By comparing the three-dimensional solutions with the shear-lag solutions, evident difference may be found.
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
文摘The experiments of the ferrite warm deformation of ultra-low carbon (ULC) Ti-IF steel were carded out on a hot simulator and the influences of deformation temperature, strain, and strain rate on the flow stress were analyzed. New flow stress models suitable to ferrite warm forming of Ti-IF steel were given on the basis of analyzing the influence of deformation technology parameters on the flow stress.
文摘To analyze the effects of width and thickness of each composition element of mixed steel U-rib-stiffened plates on the welding residual stress distribution, the distribution of the U-rib and the plate residual stress was calculated using a simplified calculation method. The method involved welding the mixed steel U-rib-stiffened plates for a structure with different sizes and different strength ratios of U-rib to plate. Based on a welding residual stress numerical simulation method validated by the blind hole method test, the distribution law of the mixed steel U-rib stiffened plate was studied. The results showed that the change of plate width has little impact on the welding residual stress and that the ratio of the thicknesses of the plate to U-rib stiffeners, the thickness of the plate, and the thickness of the U-rib has a great influence on the distribution of the welding residual stress. The thickness of plate and steel strength also greatly influenced the distribution width of the residual tensile stress. While analyzing the compression capacity of U-rib-stiffened plates, the simplified distribution of welding residual stress was used.
基金Item Sponsored by Special Funds for State Major Basis Research(G19990650)
文摘The threshold stress intensity of stress corrosion cracking(SCC) for 40 CrMo steel in 3.5%NaCl solution decreased exponentially with the increase of yield strength.The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40 CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen.This equation was also applicable to SCC of high strength steel in aqueous solution.The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength.Based on the results,the relationship between K_(ISCC) and σ_(ys) could be deduced.
文摘This paper provides a review of the differences between high pH and near-neutral pH stress corrosion cracking of pipeline steels, influencing factors, and mechanisms. The characteristics and historical information on both forms of SCC are discussed. The prospect for research in the future is also presented.
基金projects supported by Natural Science Foundation of Hebei Province,China(E2012203019)
文摘This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520℃, respectively.
文摘The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous.
文摘Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.
文摘The effect of quenching temperature on the stress corrosion cracking of 30Cr3SiNiMoV ultra-high strength steel in 3.5% NaCl aqueous solution has been studied.The threshold K_(ISCC) may continuously increase with the quenching temperature raised from 870 to 1200℃ . All of the fractures are intergranular.The analyses of the segregation along prior austenitic grain boundaries,grain size and other microstructural factors reveal that the inerease of K_(ISCC) is mainly due to the coarsening of prior austenitic grains.
文摘A more accurate estimation of stress-strain relationships for martensite and ferrite was developed, and the modified law of mixture was used to investigate the stress-strain partitioning of constituent phases in dual phase (DP) steels with two different martensite volume fractions. The results show that there exist great differences in the stress-strain contribution of martensite and ferrite to DP steel. The stress-strain partitioning coefficient is not constant in the whole strain range, but decreases with increasing the true strain of DP steel. The softening effect caused by the dilution of carbon concentration in martensite with the increase of martensite volume fraction has great influence on the strain contribution of martensite. The strain ratio of ferrite to martensite almost linearly increases with increasing the true strain of DP steel when the martensite volume fraction is 22%, because martensite always keeps elastic. But the strain ratio of ferrite to martensite varies indistinctively with the further increase in true strain of DP steel above 0.034 when the martensite volume fraction is 50%, because plastic deformation happens in martensite. The stress ratio ofmartensite to ferrite decreases monotonously with increasing the true strain of DP steel whether the martensite volume fraction is 22% or 50%.
文摘In this paper the relationship between microstructure and stress-strain behavior in tensile test of high strength pipeline steel was investigated.The steel with polygonal ferrite-bainite(PF + B) microstructure has a "round-house" type tensile stress-strain curve with low Y/T ratio,highly uniform elongation and high n-value,which means PF + B microstructure has the best deformability(i.e.Ideal stress-strain behavior) among the four microstructures.The steel with acicular ferrite-martensite&austenite(AF + MA) microstructure has a "continuous-yielding" type tensile stress-strain curve,whose deformability is worse than that of PF + B microstructure.Both the steels of polygonal ferrite-acicular ferrite(PF + AF) and polygonal ferrite-pearlite (PF+P) microstructure have "luders elongation" type tensile stress-strain curve with high Y/T ratio,low uniform elongation and low n-value,which means PF + AF and PF + P microstructures have the worst deformability among the four microstructures.