To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis...To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.展开更多
The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,door...The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,doors,windows,elevator shafts,and other locations.In this paper,we will investigate the areas with subpar soundproof performance in an assembled steel structure residential project and propose suitable noise control measures to address this issue.展开更多
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo...Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.展开更多
Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during ...Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.展开更多
In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizonta...To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizontal cyclic reciprocating loading tests on beam ends.The tests were designed to evaluate the beams'hysteresis curve,skeleton curve,bearing capacity degradation curve,stiffness degradation curve,and ductility and the nodes'energy dissipation capacity.The test results show that a newly fabricated joint will not undergo brittle damage when the beam-column joint is welded at a displacement of 105 mm.Thus,the hysteresis curve will show an inverse S shape,and an obvious slip phenomenon will occur,which is mainly due to splicing.The diameter of the bolt connecting the slab to the beam flange is slightly smaller than the aperture.Due to the existence of slippage,the skeleton curve has no evident yield point.The joint ductility coefficient is less than 3.0,and the initial rotational stiffness of the joint is also small.The buckling of the splicing panel causes a rapid decrease in the joint bearing capacity.The main approaches,appropriately reducing the weakening depth and increasing the thickness of the splicing plate,can delay the occurrence of buckling and improve the ductility of the joint.展开更多
Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also...Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.展开更多
he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D...he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.展开更多
Modern public buildings, such as multiplex cinemas and theaters, along with application of state of the art sound effects bring high acoustic insulation demands. Cinemas are often a part of building complexes such as ...Modern public buildings, such as multiplex cinemas and theaters, along with application of state of the art sound effects bring high acoustic insulation demands. Cinemas are often a part of building complexes such as shopping malls with subjects that produce serious level of noise and vibrations. Apart to regular use of polyurethane in thermal insulation purposes, it is widely used in field of acoustic insulation. Usage of polyurethane foam pads, with specific dynamic characteristics, as a base for structure supports gives a wide range of possibilities in controlling the amount of structural noise and vibrations transferred to the structure. Structure itself and acoustical pads becomes an integral system that behaves together and need to be analyzed as a whole in extensive design. Dynamic characteristics of acoustic pads depend on stress level and in same time they represent elastic supports to the structure and therefore analyzes and design is an iterative process. In other way, introduce of non-conventional material in bearing structure brings some issues, such as transfer of shear forces, that has to be governed by proper structural detailing. There are several possibilities of application in bearing structures, such as above and below steel structure. This paper gives an overall view on polyurethane as material, construction and design principles and example of usage of acoustic pads in steel structure of"Ster" cineplex in Belgrade.展开更多
<div style="text-align:justify;"> In this paper, perlite was used as a kind of modifier to prepare waterborne fire resistive coatings for steel structure. The influence of perlite on the properties of ...<div style="text-align:justify;"> In this paper, perlite was used as a kind of modifier to prepare waterborne fire resistive coatings for steel structure. The influence of perlite on the properties of the fire resistive coatings was investigated with the help of thermogravimetric analysis (TGA), micro-scale combustion calorimetry (MCC) and fire protection test. The TGA results showed that the char residue weight of the coatings was increased when perlite was loaded and the anti-oxidation performance was enhanced as well and MCC data indicated the addition of perlite reduced the peak heat release rate and total heat release. After the fire protection test, the results confirmed that the fire resistant time of the coating coated with 5 wt% perlite increased up to 114.4 min when the temperature of the sample boards’ backside reached 500?C. </div>展开更多
Taking the construction project of the National Cybersecurity Talents and Innovation Base as an example,this paper studies the construction technology of freeform surface spatial bending-torsion steel structure based ...Taking the construction project of the National Cybersecurity Talents and Innovation Base as an example,this paper studies the construction technology of freeform surface spatial bending-torsion steel structure based on structural design model transformation,including the parametric modeling of deepening design model,computer-aided bending and torsion frame production,flexible docking in the bending-torsion combination unit,and welding stress deformation,in hope to provide reference for similar projects in the future.展开更多
The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box...The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.展开更多
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o...Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice.展开更多
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu...Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.展开更多
A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward ...A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward Euler explicit algorithm. It is implemented in ABAQUS through a user-defined material subroutine, by which damage evolution could be incorporated into the analysis of seismic performance of steel structures. The case study taken up here is the investigation of a steel connection with a reduced beam section(RBS) and a steel frame with such connections. The material softening effect during the failure process is particularly investigated. The results show that material softening in the vulnerable zone has a significant effect on the distribution of stress and strain fields, as well as on the carrying capacity of the steel connection with RBS. Further, material softening is found to have almost negligible effect on the seismic performance of the steel frame in the early stages of the loading process, but has a large effect when the steel frame is about to fail. These findings offer a practical reference for the assessment of seismic structural failure, and help in understanding the damage mechanism of steel structures under seismic loading.展开更多
Horizontal strengthened storeys are widely used in super high-rise steel structures to improve the lateral structural rigidity.This use has great effects on the seismic properties of the entire structure.The seismic p...Horizontal strengthened storeys are widely used in super high-rise steel structures to improve the lateral structural rigidity.This use has great effects on the seismic properties of the entire structure.The seismic properties of the Wuhan International Securities Building (a 68-storey super high-rise steel structure with three horizontal strengthened storeys) were evaluated in this study.Two approaches,i.e.,mode-superposition response spectrum analysis and time-history analysis,were employed to calculate the seismic response of the structure.The response spectrum analysis indicated that transition parts near the three strengthened storeys were weak zones of the structure because of the abrupt change in rigidity.In the response spectrum analysis approach,the Square Root of Sum of Square (SRSS) method was recommended when the vertical seismic effects could be ignored.However,the complete quadratic combination (CQC) method was superior to SRSS method when the vertical seismic effects should be considered.With the aid of time-history analysis,the seismic responses of the structure were obtained.The whiplash effect that spectrum analysis cannot reveal was observed through time-history analysis.This study provides references for the seismic design of super high-rise steel structures with horizontal strengthened storeys.展开更多
Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing unde...Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.展开更多
Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan ...Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.展开更多
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele...The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.展开更多
The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination o...The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination of WAWS(Weighted Amplitude Wavelet Superposition) and FFT(Fast Fourier Transformation) was introduced to simulate wind velocity time series of hundreds of spatial points simultaneously. The structural shape factors of wind load was obtained from wind tunnel model test. The wind vibration factor based on structural displacement response was investigated. After comparing the computational results with wind tunnel model test data, it was found out that the two results accord with each other if wind comes from 0° direction angle, but are quite different if wind comes from 180° direction angle in the area blocked off by airport terminals. The possible reasons of this difference were analyzed. Haar wavelet was used to transform and analyze wind velocity time series and structural wind-induced dynamic responses. The relationship between exciting wind loads and structural responses was studied in time and frequency domains.展开更多
基金Anhui Province Young and Middle-aged Teacher Training Action Excellent Young Teacher Cultivation Project(YQYB2023162)Anhui University Natural Science Research Key Project(KJ2021A1410)Special Topic of the Higher Education Institution Scientific Research Development Center of the Ministry of Education(ZJXF2022080)。
文摘To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.
文摘The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,doors,windows,elevator shafts,and other locations.In this paper,we will investigate the areas with subpar soundproof performance in an assembled steel structure residential project and propose suitable noise control measures to address this issue.
基金supported by the National Natural Science Foundation of China (U1609209)National Natural Science Foundation of China (61605162)+2 种基金NSFC-Liaoning Province united foundation (U1608259)National Natural Science Foundation of China (51501219)the financial support from the China Scholarship Council
文摘Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.
基金supported by National Scientific and Technological Support Projects during the 11th Five-Year Plan Period (Grant No. 2006BAK02B04)Shanxi Provincial Youth Science and Technology Research Fund of China (Grant No. 2006021029)+2 种基金Shanxi Provincial Natural Science Foundation of China (Grant No. 2008011043-1)Shanxi Provincial High-tech Industrialization Project of China (Grant No20090020)Doctor Fund of Taiyuan University of Science and Technology of China (Grant No. 20092005)
文摘Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.
基金The National Natural Science Foundation of China(No.51968043,51978320).
文摘To examine the seismic performance of a newly fabricated weakened joint at the beam end position,four groups of energy-consuming steel plates with different weakening depths and thicknesses were subjected to horizontal cyclic reciprocating loading tests on beam ends.The tests were designed to evaluate the beams'hysteresis curve,skeleton curve,bearing capacity degradation curve,stiffness degradation curve,and ductility and the nodes'energy dissipation capacity.The test results show that a newly fabricated joint will not undergo brittle damage when the beam-column joint is welded at a displacement of 105 mm.Thus,the hysteresis curve will show an inverse S shape,and an obvious slip phenomenon will occur,which is mainly due to splicing.The diameter of the bolt connecting the slab to the beam flange is slightly smaller than the aperture.Due to the existence of slippage,the skeleton curve has no evident yield point.The joint ductility coefficient is less than 3.0,and the initial rotational stiffness of the joint is also small.The buckling of the splicing panel causes a rapid decrease in the joint bearing capacity.The main approaches,appropriately reducing the weakening depth and increasing the thickness of the splicing plate,can delay the occurrence of buckling and improve the ductility of the joint.
文摘Nowadays,the scope of bridge construction projects in China is becoming wider,which promotes China's economic development to a large extent and also improves China's transportation system.Meanwhile,people also put forward new requirements for the quality of steel structure bridges.However,in actual design,due to the influence of many fectors,some problems are inevitable,which will affect the integrity of the design.Therefore,the designer needs to fully grasp the possible design problems,and then take efiective measures to improve the integrity of the design scheme,so as to ensure the quality of the steel structure bridge and improves the safety of the steel structure bridge from the fundamentals.This paper mainly focuses on steel structure bridges,analyzed the current status of steel structure bridge types and their selection,and proposes the integrity design strategy of steel structure bridges.
基金supported by the Korea Institute of Marine Science & Technology promotion (KIMST)
文摘he virtual erection simulation system was explained for a steel structure including ship and ocean plant blocks. The simulation system predicted the erection state to optimize any gap or overlap of blocks based on 3-D measurement data. The blocks were modified (cut) on the basis of the simulation result on the ground before erecting them by crane. The re-cutting process was not required and the blocks were erected into a mother ship speedily. Therefore, the erection time is reduced, increasing the dock turnover.
文摘Modern public buildings, such as multiplex cinemas and theaters, along with application of state of the art sound effects bring high acoustic insulation demands. Cinemas are often a part of building complexes such as shopping malls with subjects that produce serious level of noise and vibrations. Apart to regular use of polyurethane in thermal insulation purposes, it is widely used in field of acoustic insulation. Usage of polyurethane foam pads, with specific dynamic characteristics, as a base for structure supports gives a wide range of possibilities in controlling the amount of structural noise and vibrations transferred to the structure. Structure itself and acoustical pads becomes an integral system that behaves together and need to be analyzed as a whole in extensive design. Dynamic characteristics of acoustic pads depend on stress level and in same time they represent elastic supports to the structure and therefore analyzes and design is an iterative process. In other way, introduce of non-conventional material in bearing structure brings some issues, such as transfer of shear forces, that has to be governed by proper structural detailing. There are several possibilities of application in bearing structures, such as above and below steel structure. This paper gives an overall view on polyurethane as material, construction and design principles and example of usage of acoustic pads in steel structure of"Ster" cineplex in Belgrade.
文摘<div style="text-align:justify;"> In this paper, perlite was used as a kind of modifier to prepare waterborne fire resistive coatings for steel structure. The influence of perlite on the properties of the fire resistive coatings was investigated with the help of thermogravimetric analysis (TGA), micro-scale combustion calorimetry (MCC) and fire protection test. The TGA results showed that the char residue weight of the coatings was increased when perlite was loaded and the anti-oxidation performance was enhanced as well and MCC data indicated the addition of perlite reduced the peak heat release rate and total heat release. After the fire protection test, the results confirmed that the fire resistant time of the coating coated with 5 wt% perlite increased up to 114.4 min when the temperature of the sample boards’ backside reached 500?C. </div>
基金The Hubei Provincial Building Technology Project in 2021(No.43)。
文摘Taking the construction project of the National Cybersecurity Talents and Innovation Base as an example,this paper studies the construction technology of freeform surface spatial bending-torsion steel structure based on structural design model transformation,including the parametric modeling of deepening design model,computer-aided bending and torsion frame production,flexible docking in the bending-torsion combination unit,and welding stress deformation,in hope to provide reference for similar projects in the future.
文摘The principle of increasing structural loading abillity by the using of elastic-plastic con- trolling design, which can make steel reach a highcr yield slrength through controlling undue strains produced in loaded box steel structures and no damager to the static mechanical properties of the used materials, is dealt with under the guarantee of strength, rigidity, and stability. A new idea of elastic--plastic controlling design, which is mainly based on the elastic-plastic theory and experi- mental results and is different from the current design which is mainly based handbooks and design- er' s experience, is established. That is: the loading time and its effect on loaded structures are con- sidered, and the potential strength in used matcrials is fully utilized through the controlling of struc- tural strains in design. By the using of this design method, the weight and cost of box structures will be reduced in large amount.
基金the Zhejiang Public Welfare Technology Application Research Project(LGF22E080021)Ningbo Natural Science Foundation Project(202003N4169)+2 种基金Natural Science Foundation of China(11202138,52008215)the Natural Science Foundation of Zhejiang Province,China(LQ20E080013)the Major Special Science and Technology Project(2019B10076)of“Ningbo Science and Technology Innovation 2025”.
文摘Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice.
文摘Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.
文摘A numerical approach for simulating the seismic performance of steel truss structures, considering damage-induced material softening, is developed based on a ductile damage constitutive model by applying the backward Euler explicit algorithm. It is implemented in ABAQUS through a user-defined material subroutine, by which damage evolution could be incorporated into the analysis of seismic performance of steel structures. The case study taken up here is the investigation of a steel connection with a reduced beam section(RBS) and a steel frame with such connections. The material softening effect during the failure process is particularly investigated. The results show that material softening in the vulnerable zone has a significant effect on the distribution of stress and strain fields, as well as on the carrying capacity of the steel connection with RBS. Further, material softening is found to have almost negligible effect on the seismic performance of the steel frame in the early stages of the loading process, but has a large effect when the steel frame is about to fail. These findings offer a practical reference for the assessment of seismic structural failure, and help in understanding the damage mechanism of steel structures under seismic loading.
文摘Horizontal strengthened storeys are widely used in super high-rise steel structures to improve the lateral structural rigidity.This use has great effects on the seismic properties of the entire structure.The seismic properties of the Wuhan International Securities Building (a 68-storey super high-rise steel structure with three horizontal strengthened storeys) were evaluated in this study.Two approaches,i.e.,mode-superposition response spectrum analysis and time-history analysis,were employed to calculate the seismic response of the structure.The response spectrum analysis indicated that transition parts near the three strengthened storeys were weak zones of the structure because of the abrupt change in rigidity.In the response spectrum analysis approach,the Square Root of Sum of Square (SRSS) method was recommended when the vertical seismic effects could be ignored.However,the complete quadratic combination (CQC) method was superior to SRSS method when the vertical seismic effects should be considered.With the aid of time-history analysis,the seismic responses of the structure were obtained.The whiplash effect that spectrum analysis cannot reveal was observed through time-history analysis.This study provides references for the seismic design of super high-rise steel structures with horizontal strengthened storeys.
基金Project of Ministry of Housing and Urban-Rural Development of China(No.2012-K2-28)
文摘Determining initial pretension values of pre-stressed cables is one of the key problems for a steel mega frame and pre-stressed composite bracing structure.Through the mechanical analysis of the composite bracing under vertical loading,the critical factors deciding the initial pretention value were found.According to these factors,a rule for the initial pretension value was put forward.The determination equations were acquired based on the principle of force equilibrium at nodes.The numerical results indicate that the internal force disequilibrium in composite bracings resulted from symmetrical load can be eliminated only in a symmetrical way,so that initial pretention values are decided only by vertical loads.The influencing coefficient leveling method,taking into account interactions between story and story,is accurate and feasible.
基金the National Science and Technology Supporting Program(2012BAK15B02)the National Natural Science Foundation Program(50938006)the special program for Science Field Investigation on Lushan M7.0 Earthquake from the China Earthquake Administration
文摘Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.
基金Supported by National Natural Science Foundation of China(No.50608026)
文摘The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.
基金National Natural Science Foundation ofChina (No.50278054) and the Fund ofScience and Technology Development ofShanghai (No.04JC14059)
文摘The wind-induced dynamic response of long-span light-weight steel arch structure of the global transportation center (GTC) of Beijing Capital International Airport was studied. A composite technique with combination of WAWS(Weighted Amplitude Wavelet Superposition) and FFT(Fast Fourier Transformation) was introduced to simulate wind velocity time series of hundreds of spatial points simultaneously. The structural shape factors of wind load was obtained from wind tunnel model test. The wind vibration factor based on structural displacement response was investigated. After comparing the computational results with wind tunnel model test data, it was found out that the two results accord with each other if wind comes from 0° direction angle, but are quite different if wind comes from 180° direction angle in the area blocked off by airport terminals. The possible reasons of this difference were analyzed. Haar wavelet was used to transform and analyze wind velocity time series and structural wind-induced dynamic responses. The relationship between exciting wind loads and structural responses was studied in time and frequency domains.