Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temp...Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temperatureand the heat loss on the surface. At the same time, it analyzed the influence of the deformation and stress, whichgenerated in the plate butt-welding process, to the superstructure steel welding deformation. The result showedthat the deformation and stress generated in the steel plate butt-welding process are considered to be the mainfactors to influence the welding deformation of superstructure steel. It found the effective ways to reduce the weldingdeformation of the hull superstructure steel is to relieve the butt-welding deformation and release butt-welding stressbefore welding the hull superstructure steel.展开更多
Optimization of assembly process is significant for ship construction, thus reducing the time and related costs of construction. Welding Structure Deformation Analysis (Weld-sta) was used to predict welding deformat...Optimization of assembly process is significant for ship construction, thus reducing the time and related costs of construction. Welding Structure Deformation Analysis (Weld-sta) was used to predict welding deformation of a hull block. After the reliability of simulation was proved by comparing with measured results, four kinds of welding sequences was determined. By considering welding deformation and assembly process with the e]ficieney of automation, decreasing the overturn times (times of turning the erections upside down during welding) and working hours etc, one of the welding sequences is assumed to be the most reasonable one. The study shows this method is very useful in optimal assembly program determination of practical engineering structures.展开更多
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu...Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.展开更多
The study has compared the effect of gas metal arc welding techniques on some mechanical properties of duplex stainless steel. The samples after welded were given post weld heat treatment (quenching in engine and neem...The study has compared the effect of gas metal arc welding techniques on some mechanical properties of duplex stainless steel. The samples after welded were given post weld heat treatment (quenching in engine and neem oil). After the analyses, it was established that duplex stainless steel can be weld successfully using gas metal arc welding process (GMAW). Both Lubricating oil and neem oil can serve as quenching medium for post welding heat treatment of duplex stainless steel. The results of the studies also show that welding and heat treatment really affect the mechanical properties of the alloy;the control strength was 811.47 MN/m2 while that of the welded samples ranged from 177.07 to 257.32 MN/m2. The control impact energy was 162.70 J, while that of the welded samples ranged from 38.64 J to 56.20 J. The research also shows that the stress relief heat treatment gives better strength (A3 = 331 MN/m2) compared to those that were quenched in lubricating oil (A2 = 329 MN/m2) and neem oil (A1 = 222 MN/m2), but the reverse is the case in terms of toughness.展开更多
Macro-deformation characteristics of continuous drive friction welded mild steel joints were examined by using one deformable workpiece (objective) and the other undeformable one (rigid). The microstructure evolut...Macro-deformation characteristics of continuous drive friction welded mild steel joints were examined by using one deformable workpiece (objective) and the other undeformable one (rigid). The microstructure evolution and hardness change across the joint were studied. The results show that the axial shortening and radial increment of joints increase with increasing the frictiou time at l 200 rpm. The cementite particles of pearlites in the weld center are uniformly distributed on the ferrite matrix, while the cementites of the pearlite in the thermal-mechanically affected zone are broken and discontinuously dispersed in the pearlite. The hardness decreases rapidly from the weld center to the parent metal under the coupled effects of heat and deformation during the rapid heating and cooling processes.展开更多
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen...The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.展开更多
Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainles...Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainless steel, they had been less studied. Tensile shear loading experiment of resistance spot welding specimens prepared with 2 mm 301L sheets, was carried out at 15℃ and -50℃. Optical microscopy and scanning electron microscopy (SEM) as well as X-ray diffraction (XRD) were used to investigate the microstructure of weld nugget, and specimens fracture surface. The results showed that the initial weld nugget was composed of 8.4% α(δ) ferrite and 91.6% austenite. Tensile shear load bearing capacity of spot welding specimen at -50℃ was 24.8 kN, 17.7% higher than that at 15℃. About 78.5 vol. pct. martensite transformation was induced by plastic deformation at -50℃, while about 67.9 vol. pct transformation induced at 15℃. The plasticity of spot welding joint decreased with the decline of experimental temperature.展开更多
The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformati...The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates,with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the fast cooling regime.At relatively high cooling rates,which corresponded to low heat inputs,the hardness of the simulated HAZ was above that of the base metal.When the cooling rate was below 9C/s,the welding HAZ would have an obvious softening.The analysis of transformation rates in continuous cooling processes was completed by numerical differential method.The result indicated that the microstructure transformation rate of the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s.展开更多
Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At ...Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At the same time, this paper analyzed the influences of the heat source models, the latent heat and the welding parameters on the temperature distributions. The comparisons between the simulated results and the experiments show double ellipsoidal model is good for three-dimensional numerical simulations. Furthermore, the adaptive mesh technique is applied in the three-dimensional model which greatly reduces the number of nodes and elements in the simulation.展开更多
Based on the feasibility of isothermal superplastic solid state welding of steel and copper alloy, the welded surface of steel surface was ultra-fined through laser quenching, and then the welding process tests betwee...Based on the feasibility of isothermal superplastic solid state welding of steel and copper alloy, the welded surface of steel surface was ultra-fined through laser quenching, and then the welding process tests between different base metals of 40Cr and QCr0.5 were made under the condition of non vacuum and non shield gas. The experimental results show that, with the sample surface of steel after laser quenching and that of copper alloy carefully cleaned, and under the pre-pressed stress of 56.684.9 MPa, at the welding temperature of 750800 ℃ and at initial strain rate of (2.57.5)×10-4 s-1, the solid state welding can be finished in 120180 s so that the strength of the joint is up to that of QCr0.5 base metal and the expansion rate of the joint does not exceed 6%. The plastic deformation of the joint was further analysed. The superplastic deformation of the copper alloy occurs in welding process and the deformation of steel are little.展开更多
In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carrie...In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.展开更多
Welding deformation often brings about manufacturing problems such as dimensional inaccuracies during assembly and reduces fabrication efficiency.Prediction and controlling welding deformation can help to improve the ...Welding deformation often brings about manufacturing problems such as dimensional inaccuracies during assembly and reduces fabrication efficiency.Prediction and controlling welding deformation can help to improve the quality of welded structures.In this paper,the welding deformation of propeller base struc-tures is predicted by means of numerical approaches and mechanical constraints are proposed to control deformations in welding process.Thermal elasto-plastic finite element method(TEP FEM)is employed to simulate welding process of the base structure.Computed accuracy of welding deformation by TEP FEM analysis is verified by comparing with experimental data of tee joint welding.Results show that welding deformations of the base mainly comprise out-of-plane distortion of ring fringe and radial distortion of cylindrical plate.Exerting mechanical constraints of fixed points at fringe and rigid supports inside cylin-der can decrease out-of-plane and radial distortions effectively.The numerical approach adopted in this article can serve as an effective tool to optimize welding process planning in integrated design method.展开更多
This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applica...This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applications.Firstly,the advantages and applications of FSW process are introduced,and the significance and key issues for thermomechanical analysis in FSW are pointed out.Then,solid mechanic and fluid dynamic methods in modeling FSW process are described,and the key issues in modeling FSW are discussed.Di erent available mesh modeling techniques including the applications,benefits and shortcomings are explained.After that,at different subsections,the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth.Finally,the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.展开更多
In order to investigate the residual angular deformation in fillet welding of T-joint of HG785 high strength steel with a medium thickness plate, both detailed thermo-mechanical finite element simulation and conventio...In order to investigate the residual angular deformation in fillet welding of T-joint of HG785 high strength steel with a medium thickness plate, both detailed thermo-mechanical finite element simulation and conventional gas metal arc welding experiment were carried out in the present study. In-process deformation control method using backheating method to reduce the residual deformation was discussed.展开更多
The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detec...The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detection,the weld joint gained is sound in shape without crackles,pores,incomplete fusion and other defects.As shown by the mechanical property,SEM and EDAX and in the metallographic analysis and test,the rupture position of copper-steel welded joint is located in the copper-part HAZ when the tensile strength reaches above 210MPa and Fe content of the welded joint involved in 1# test specimen reaches around 22.78%-26.75%,with the hardness achieving between 102~107HB and the weld structure being (α+ε) duplex solid solution.展开更多
2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat sur...2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat surface on both the top and bottom sides of the welded joints was obtained. In addition, the hook shape usually generated in the conventional FSSW was eliminated by this technique, and the unbonded interface was parallel to the surface of the sheets. Owing to the enlarged bonded interface width by eliminating the keyhole and the intermixed interface by the adjustable probe, the plug fracture occurred under all the welding conditions in the present study. Due to the suppression of the thickness thinning and elimination of the hook shape, the joint performance was improved in the plug fracture mode. The shear tensile performance was considered to strongly depend on the microstructure in the tip area of the unbonded interface and the maximum shear fracture load of 23.0 kN was achieved in this study.展开更多
Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding ...Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.展开更多
This paper presents an experimental design approach to process parameter optimization for the laser lap welding of SUS301L austenitic stainless steels using Nd:YAG laser in order to reduce the welding deformations of ...This paper presents an experimental design approach to process parameter optimization for the laser lap welding of SUS301L austenitic stainless steels using Nd:YAG laser in order to reduce the welding deformations of the back of the welding seams while ensuring mechanical properties of welding joints.To determine the optimal laser-welding parameters,a set of mathematical models were developed relating welding parameters to each of the weld characteristics.These were validated both statistically and experimentally.In order to reduce experimental error and the number of specimens,the part of orthogonal experiments were used in this study.The quality criteria set for the weld to determine optimal parameters were the maximization of weld width and the minimization of weld depth.Laser power,welding speed,the laser irradiation angle,the focused distance and shield gas of 3.5kW,7.0m/min,70°,0mm and N2 with the flow of 30L/min,respectively,with a fiber diameter of 600μm were identified as the optimal set of process parameters.展开更多
As an effective and economical surface strengthening method, flame spray technology is now widely used in surface shielding of engineering materials and equipments or parts repairments. However, the porosities inside ...As an effective and economical surface strengthening method, flame spray technology is now widely used in surface shielding of engineering materials and equipments or parts repairments. However, the porosities inside the coating and the poor bonding of the coating strength展开更多
The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show ...The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show that the tensile strength of the inhomogeneous joint of TiNi shape memory alloy and stainless steel is lower than that of the homogeneous joint and a plastic field appears in the heat affected zone on the side of TiNi shape memory alloy. Because TiNi shape memory alloy and stainless steel melted, a brittle as-cast structure was formed in the weld. The tensile strength and the shape memory effect of the inhomogeneous joint are strongly influenced by the changes of composition and structure of the joint. Measures should be taken to reduce the base metal melting and prevent the weld metal from the invasion by O for improving the properties of the TiNi shape memory alloy and stainless steel inhomogeneous joint.展开更多
文摘Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temperatureand the heat loss on the surface. At the same time, it analyzed the influence of the deformation and stress, whichgenerated in the plate butt-welding process, to the superstructure steel welding deformation. The result showedthat the deformation and stress generated in the steel plate butt-welding process are considered to be the mainfactors to influence the welding deformation of superstructure steel. It found the effective ways to reduce the weldingdeformation of the hull superstructure steel is to relieve the butt-welding deformation and release butt-welding stressbefore welding the hull superstructure steel.
文摘Optimization of assembly process is significant for ship construction, thus reducing the time and related costs of construction. Welding Structure Deformation Analysis (Weld-sta) was used to predict welding deformation of a hull block. After the reliability of simulation was proved by comparing with measured results, four kinds of welding sequences was determined. By considering welding deformation and assembly process with the e]ficieney of automation, decreasing the overturn times (times of turning the erections upside down during welding) and working hours etc, one of the welding sequences is assumed to be the most reasonable one. The study shows this method is very useful in optimal assembly program determination of practical engineering structures.
文摘Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.
文摘The study has compared the effect of gas metal arc welding techniques on some mechanical properties of duplex stainless steel. The samples after welded were given post weld heat treatment (quenching in engine and neem oil). After the analyses, it was established that duplex stainless steel can be weld successfully using gas metal arc welding process (GMAW). Both Lubricating oil and neem oil can serve as quenching medium for post welding heat treatment of duplex stainless steel. The results of the studies also show that welding and heat treatment really affect the mechanical properties of the alloy;the control strength was 811.47 MN/m2 while that of the welded samples ranged from 177.07 to 257.32 MN/m2. The control impact energy was 162.70 J, while that of the welded samples ranged from 38.64 J to 56.20 J. The research also shows that the stress relief heat treatment gives better strength (A3 = 331 MN/m2) compared to those that were quenched in lubricating oil (A2 = 329 MN/m2) and neem oil (A1 = 222 MN/m2), but the reverse is the case in terms of toughness.
文摘Macro-deformation characteristics of continuous drive friction welded mild steel joints were examined by using one deformable workpiece (objective) and the other undeformable one (rigid). The microstructure evolution and hardness change across the joint were studied. The results show that the axial shortening and radial increment of joints increase with increasing the frictiou time at l 200 rpm. The cementite particles of pearlites in the weld center are uniformly distributed on the ferrite matrix, while the cementites of the pearlite in the thermal-mechanically affected zone are broken and discontinuously dispersed in the pearlite. The hardness decreases rapidly from the weld center to the parent metal under the coupled effects of heat and deformation during the rapid heating and cooling processes.
文摘The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used.
文摘Transformation induced plasticity (TRIP) and twinning induced plasticity (TWlP) effects had been widely studied in single austenite steel. But in duplex γ & α(δ) phase, such as welding materials of stainless steel, they had been less studied. Tensile shear loading experiment of resistance spot welding specimens prepared with 2 mm 301L sheets, was carried out at 15℃ and -50℃. Optical microscopy and scanning electron microscopy (SEM) as well as X-ray diffraction (XRD) were used to investigate the microstructure of weld nugget, and specimens fracture surface. The results showed that the initial weld nugget was composed of 8.4% α(δ) ferrite and 91.6% austenite. Tensile shear load bearing capacity of spot welding specimen at -50℃ was 24.8 kN, 17.7% higher than that at 15℃. About 78.5 vol. pct. martensite transformation was induced by plastic deformation at -50℃, while about 67.9 vol. pct transformation induced at 15℃. The plasticity of spot welding joint decreased with the decline of experimental temperature.
文摘The transformation behavior and microstructure development in the heat affected zone(HAZ)of 800MPa grade ultra fine structured steel was investigated.It was found that the HAZ has intermediate temperature transformation characteristics in a wide range of cooling rates,with the bainite sheaves consisting of bainite ferrite plates without carbide precipitation and retained austenite in the fast cooling regime.At relatively high cooling rates,which corresponded to low heat inputs,the hardness of the simulated HAZ was above that of the base metal.When the cooling rate was below 9C/s,the welding HAZ would have an obvious softening.The analysis of transformation rates in continuous cooling processes was completed by numerical differential method.The result indicated that the microstructure transformation rate of the HAZ in 800MPa grade ultra fine structured steel changed sharply to slow speeds when the cooling time t8/5 is longer than 7s.
文摘Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At the same time, this paper analyzed the influences of the heat source models, the latent heat and the welding parameters on the temperature distributions. The comparisons between the simulated results and the experiments show double ellipsoidal model is good for three-dimensional numerical simulations. Furthermore, the adaptive mesh technique is applied in the three-dimensional model which greatly reduces the number of nodes and elements in the simulation.
基金Project(2004 294) supported by the Innovative Talents Foundation in University of Henan Province China+2 种基金 Project(0511050800) supported by the Natural Science Foundation of Henan Province China Project(2003430211)supported by the Natural Sci
文摘Based on the feasibility of isothermal superplastic solid state welding of steel and copper alloy, the welded surface of steel surface was ultra-fined through laser quenching, and then the welding process tests between different base metals of 40Cr and QCr0.5 were made under the condition of non vacuum and non shield gas. The experimental results show that, with the sample surface of steel after laser quenching and that of copper alloy carefully cleaned, and under the pre-pressed stress of 56.684.9 MPa, at the welding temperature of 750800 ℃ and at initial strain rate of (2.57.5)×10-4 s-1, the solid state welding can be finished in 120180 s so that the strength of the joint is up to that of QCr0.5 base metal and the expansion rate of the joint does not exceed 6%. The plastic deformation of the joint was further analysed. The superplastic deformation of the copper alloy occurs in welding process and the deformation of steel are little.
文摘In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.
文摘Welding deformation often brings about manufacturing problems such as dimensional inaccuracies during assembly and reduces fabrication efficiency.Prediction and controlling welding deformation can help to improve the quality of welded structures.In this paper,the welding deformation of propeller base struc-tures is predicted by means of numerical approaches and mechanical constraints are proposed to control deformations in welding process.Thermal elasto-plastic finite element method(TEP FEM)is employed to simulate welding process of the base structure.Computed accuracy of welding deformation by TEP FEM analysis is verified by comparing with experimental data of tee joint welding.Results show that welding deformations of the base mainly comprise out-of-plane distortion of ring fringe and radial distortion of cylindrical plate.Exerting mechanical constraints of fixed points at fringe and rigid supports inside cylin-der can decrease out-of-plane and radial distortions effectively.The numerical approach adopted in this article can serve as an effective tool to optimize welding process planning in integrated design method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51475272,51842507)Key R&D Program of Shandong Province in China(Grant No.2018GGX103001).
文摘This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applications.Firstly,the advantages and applications of FSW process are introduced,and the significance and key issues for thermomechanical analysis in FSW are pointed out.Then,solid mechanic and fluid dynamic methods in modeling FSW process are described,and the key issues in modeling FSW are discussed.Di erent available mesh modeling techniques including the applications,benefits and shortcomings are explained.After that,at different subsections,the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth.Finally,the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.
文摘In order to investigate the residual angular deformation in fillet welding of T-joint of HG785 high strength steel with a medium thickness plate, both detailed thermo-mechanical finite element simulation and conventional gas metal arc welding experiment were carried out in the present study. In-process deformation control method using backheating method to reduce the residual deformation was discussed.
基金Foundation item:NUST Research Funding,No.2010XQTR01
文摘The paper studies the twin wire butt welding of 6mm-thick T2 copper and Q235 steel plate by using the twin wire consisting of one copper-plated welding wire and one steel welding wire.According to the appearance detection,the weld joint gained is sound in shape without crackles,pores,incomplete fusion and other defects.As shown by the mechanical property,SEM and EDAX and in the metallographic analysis and test,the rupture position of copper-steel welded joint is located in the copper-part HAZ when the tensile strength reaches above 210MPa and Fe content of the welded joint involved in 1# test specimen reaches around 22.78%-26.75%,with the hardness achieving between 102~107HB and the weld structure being (α+ε) duplex solid solution.
基金financially supported by the New Energy and Industrial Technology Development Organization (NEDO) under the “Innovation Structural Materials Project (Future Pioneering Projects)”。
文摘2 mm low carbon steel plates were successfully welded by the flat friction stir spot welding(FSSW) using double side adjustable tools, by which the keyhole formed in the conventional FSSW was eliminated and a flat surface on both the top and bottom sides of the welded joints was obtained. In addition, the hook shape usually generated in the conventional FSSW was eliminated by this technique, and the unbonded interface was parallel to the surface of the sheets. Owing to the enlarged bonded interface width by eliminating the keyhole and the intermixed interface by the adjustable probe, the plug fracture occurred under all the welding conditions in the present study. Due to the suppression of the thickness thinning and elimination of the hook shape, the joint performance was improved in the plug fracture mode. The shear tensile performance was considered to strongly depend on the microstructure in the tip area of the unbonded interface and the maximum shear fracture load of 23.0 kN was achieved in this study.
文摘Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.
基金Foundation of the Education Ministry for Returned Chinese Scholars,China for financially supporting this research under Contract No.20080003
文摘This paper presents an experimental design approach to process parameter optimization for the laser lap welding of SUS301L austenitic stainless steels using Nd:YAG laser in order to reduce the welding deformations of the back of the welding seams while ensuring mechanical properties of welding joints.To determine the optimal laser-welding parameters,a set of mathematical models were developed relating welding parameters to each of the weld characteristics.These were validated both statistically and experimentally.In order to reduce experimental error and the number of specimens,the part of orthogonal experiments were used in this study.The quality criteria set for the weld to determine optimal parameters were the maximization of weld width and the minimization of weld depth.Laser power,welding speed,the laser irradiation angle,the focused distance and shield gas of 3.5kW,7.0m/min,70°,0mm and N2 with the flow of 30L/min,respectively,with a fiber diameter of 600μm were identified as the optimal set of process parameters.
文摘As an effective and economical surface strengthening method, flame spray technology is now widely used in surface shielding of engineering materials and equipments or parts repairments. However, the porosities inside the coating and the poor bonding of the coating strength
文摘The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show that the tensile strength of the inhomogeneous joint of TiNi shape memory alloy and stainless steel is lower than that of the homogeneous joint and a plastic field appears in the heat affected zone on the side of TiNi shape memory alloy. Because TiNi shape memory alloy and stainless steel melted, a brittle as-cast structure was formed in the weld. The tensile strength and the shape memory effect of the inhomogeneous joint are strongly influenced by the changes of composition and structure of the joint. Measures should be taken to reduce the base metal melting and prevent the weld metal from the invasion by O for improving the properties of the TiNi shape memory alloy and stainless steel inhomogeneous joint.