Utilizing ANSYS CFX commercial software and volume fraction of fluid (VOF) model, fluctuation behav- ior of steel/slag interface was numerically simulated in continuous casting mold with static magnetic field, and t...Utilizing ANSYS CFX commercial software and volume fraction of fluid (VOF) model, fluctuation behav- ior of steel/slag interface was numerically simulated in continuous casting mold with static magnetic field, and the influence of metal jet characteristics on the behavior of steel/slag interface was investigated. The results indicated that the behavior of steel/slag interface is similar at different process parameters, which is closely related to the characteristic of the flow field. The steel/slag interface has an obvious trough characteristic, which can be divided in- to three zones: frontal valley zone, back valley zone and horizontal zone~ as the magnetic flux density increases, the fluctuation of liquid level increases firstly and then decreases, and a reasonable magnetic flux density can make steel/ slag interface obtain a relatively flat interface, which can prevent slag from being entrapped into liquid steel. For a thin slab continuous casting process, when the casting speed is 4 m/min, a reasonable magnetic flux density is about 0.5 T, and the interfacial fluctuation is weaker. No matter the position of magnetic field is horizontal or vertical, for different operating parameters, there is a corresponding reasonable magnetic field position where the steel/slag inter- face fluctuation can be properly controlled and slag entrapment can be prevented.展开更多
The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and...The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to eva...The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to evaluate the low-temperature crack resistance of SAM and basalt asphalt mixture(BAM).Based on the digital image correlation technique(DIC),the strain field distribution and crack propagation of SAM were analyzed from the microscopic point of view,and a new index,crack length factor(C),was proposed to evaluate the crack resistance of the asphalt mixture.The crystal phase composition and microstructure of steel slag aggregate(SA)and basalt aggregate(BA)were studied by X-ray diffraction(XRD)and scanning electron microscopy(SEM)to explore the low-temperature crack resistance mechanism of SAM.Results show that the low-temperature crack resistance of SAM is better than that of BAM;SAM has good integrity and persistent elastic deformation,and its bending failure mode is a hysteretic quasi-brittle failure;The SA surface is evenly distributed with pores and has surface roughness.SA has the composition phase of alkaline aggregate-calcite(CaCO3),so it has good adhesion to asphalt,which reveals the mechanism of excellent low-temperature crack resistance of SAM.展开更多
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully ...Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully utilized to their best market values.At the same time,infrastructural renewal will take place in Qatar over the next ten years,and there will be a greater demand for aggregates and other construction materials as the country suffers from the availability of good aggregates.This paper presents results obtained on the use of steel slag,gravel and gabbro(control)in HMAC(hot mix asphalt concrete)paving mixtures and road bases and sub-bases.Tests were conducted in accordance with QCS-2010(Qatar Construction Specifications)and results were compared with QCS requirements for aggregates used in these applications.Based on the data obtained in this work,steel slag and gravel aggregates have a promising potential to be used in HMAC paving mixtures on Qatar’s roads,whether in asphalt base and asphalt wearing courses or as unbound aggregates in the base and sub-base pavement structure.展开更多
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s...Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.展开更多
Cement,phosphorous slag(PS),and steel slag(SS)were used to prepare low-carbon cementitious materials,and triisopropanolamine(TIPA)was used to improve the mechanical properties by controlling the hydration process.The ...Cement,phosphorous slag(PS),and steel slag(SS)were used to prepare low-carbon cementitious materials,and triisopropanolamine(TIPA)was used to improve the mechanical properties by controlling the hydration process.The experimental results show that,by using 0.06%TIPA,the compressive strength of cement containing 60%PS or 60%SS could be enhanced by 12%or 18%at 28 d.The presence of TIPA significantly affected the hydration process of PS and SS in cement.In the early stage,TIPA accelerated the dissolution of Al in PS,and the formation of carboaluminate hydrate was facilitated,which could induce the hydration;TIPA promoted the dissolution of Fe in SS,and the formation of Fe-monocarbonate,which was precipitated on the surface of SS,resulting in the postponement of hydration,especially for the high SS content.In the later stage,under the continuous solubilization effect of TIPA,the hydration of PS and SS could refine the pore structure.It was noted that compared with portland cement,the carbon emissions of cement-PS-TIPA and cement-SS-TIPA was reduced by 52%and 49%,respectively.展开更多
Interface morphology has important influence on the bond quality of titanium clad steel plates. The mechanical properties of titanium clad steel plates with wavy and straight interfaces were investigated by tensile-sh...Interface morphology has important influence on the bond quality of titanium clad steel plates. The mechanical properties of titanium clad steel plates with wavy and straight interfaces were investigated by tensile-shear tests and bending tests. The interface morphology of the plates was examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results show that the shear strength of a wavy interface is higher than that of a straight interface. A wavy interface is the guarantee for obtaining high shear strength to provide a greater shear resistance. During the maerobending process, cracks appear in the swirl of the wave tip and ferrotitanium intermetallies. For in-situ observing the bending process by SEM, the wave tip of a wavy interface and the massive ferrotitartium intermetallies of a straight interface are places where cracks initiate and propagate. The results are the same as those observed in the macrobending process. Became of high hardness, the wave tip and the massive ferrotitanium intermetallies are hard in terms of compatible deformation.展开更多
In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC...In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC,and a Si-enriched layer on the bonding strength was clarified, and an industrial-scaled titanium-clad steel plate with shear strength over 200 MPa was produced with a carefully set schedule accordingly. It was found that hot rolling titanium-clad steel plates had a flat interface without obvious cracks. In the rolling process,both Ti and Fe atoms interdiflhsed,but Fe difthsed much faster than Ti. The Fe-diffused area consisted of three regions. After a high temperature heat treatment, the diffusion depth of Fe and Ti elements increased significantly and evident Si segregation and TiFe layers were identified. Thermal cracking initiated in the Si segregation layer and then propagated along the TiFe layer and Fe-diffused layer on the titanium side.展开更多
An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copp...An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process.展开更多
Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shr...Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.展开更多
We investigated the effects of calcination temperature(950-1450℃),steel slag content,and the total chromium content of steel slag on the Cr^(6+)contents of clinker samples produced using steel slags with different ch...We investigated the effects of calcination temperature(950-1450℃),steel slag content,and the total chromium content of steel slag on the Cr^(6+)contents of clinker samples produced using steel slags with different chromium contents.Additionally,the reactions of chromium in clinker(produced using steel slag)during calcination were studied.It is found that Cr^(6+)conversion increases with increasing calcination temperature to 1250℃,reaching a maximum of 43%-79%,before decreasing to 18%-42%at 1450℃.Cr^(6+)is mainly formed by the oxidation of trivalent chromium(Cr^(3+))during the solid-phase reaction stage of clinker calcination.Furthermore,the Cr^(6+)content of a clinker sample is proportional to the chromium content of its raw meal precursor and is mainly in the form of water-insoluble calcium chromate(CaCrO_(4)).The chromium in clinker is mainly distributed in tricalcium aluminate and tetracalcium aluminoferrite,however,some is present in silicate minerals.We expect to inform the monitoring and control of the Cr^(6+)content of clinker(produced using steel slag)and resulting cement.展开更多
In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag ...In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag powder and mineral powder(limestone powder)were compared by scanning electron microscope(SEM),and the high-temperature rheological properties of asphalt mortar with difierent ratio of filler quality to asphalt quality(F/A)and difierent substitution rates of mineral powder(S/F)were studied by dynamic shear rheological test.The results show that the surface microstructure of steel slag powder is more abundant than that of mineral powder,and the adhesion of steel slag to asphalt is better than that of limestone.At the same temperature,the lower the ratio of S/F is,the greater the rutting factor and complex modulus will be.In addition,the complex modulus and rutting factor of the asphalt mortar increase with the increase of F/A,and the filler type and F/A have a negligible efiect on the phase angle.展开更多
Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due t...Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.展开更多
The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most o...The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.展开更多
This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the en...This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).展开更多
Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was c...Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was calculated.Then,the unsteady-state model was used to simulate the heat recovery under three different flow fields(O-type,S-type,and nonshielding type(Nontype)).Second,the simulation results were validated by in-situ industrial experiments.The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype,S-type,and O-type.Finally,heat recovery was carried out under the Nontype flow field in an industrial test.The heat recovery efficiency increased from~76%and~78%to~81%when the steel slag thickness decreased from 400 and 300 to 200 mm,corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m^(3)/h.Therefore,the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field.Most importantly,the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50604005,50834009)Natural Science Foundation of Liaoning Province of China(20102074)+2 种基金Fundamental Research Funds for the Central Universities of China(N100409005)Key Grant Project of Chinese Ministry of Education(311014)"111" Project of China(B07015)
文摘Utilizing ANSYS CFX commercial software and volume fraction of fluid (VOF) model, fluctuation behav- ior of steel/slag interface was numerically simulated in continuous casting mold with static magnetic field, and the influence of metal jet characteristics on the behavior of steel/slag interface was investigated. The results indicated that the behavior of steel/slag interface is similar at different process parameters, which is closely related to the characteristic of the flow field. The steel/slag interface has an obvious trough characteristic, which can be divided in- to three zones: frontal valley zone, back valley zone and horizontal zone~ as the magnetic flux density increases, the fluctuation of liquid level increases firstly and then decreases, and a reasonable magnetic flux density can make steel/ slag interface obtain a relatively flat interface, which can prevent slag from being entrapped into liquid steel. For a thin slab continuous casting process, when the casting speed is 4 m/min, a reasonable magnetic flux density is about 0.5 T, and the interfacial fluctuation is weaker. No matter the position of magnetic field is horizontal or vertical, for different operating parameters, there is a corresponding reasonable magnetic field position where the steel/slag inter- face fluctuation can be properly controlled and slag entrapment can be prevented.
基金supported by the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2020jcyj-msxm X0544,CSTB2022NSCQ-MSX0352,CSTB2022NSCQ-MSX0891,cstc2020jcyj-msxm X0184)Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202001416)National Natural Science Foundation of China(Grant Nos.11847077,52001028)。
文摘The metallurgical quality control of magnesium(Mg)and Mg alloys in melting process is required to ensure a satisfied mechanical and corrosion performance,while the typical used steel crucible introduces impurities and interfacial interaction during melting process.Therefore,a systematic study about impurities diffusion and interfacial interaction between molten Mg and steel is necessary.In the present study,the interfacial reaction between molten AZ91D Mg alloy and mild steel during melting process was investigated with the melting temperatures of 700℃,750℃ and 800℃.The results show that Al(Fe,Mn)intermetallic layer is the intermetallic primarily formed at the interfaces of AZ91D melt and mild steel.Meanwhile,Al_(8)(Mn,Fe)5is indexed between Al(Fe,Mn)and AZ91D.AlFe_(3)C appears between the mild steel and Al(Fe,Mn)at 700℃ and 750℃,but absent at 800℃ due to the increased solubility of carbon in Mg matrix.It is found that the growth of the intermetallic layer is controlled by diffusion mechanism,and Al and Mn are the dominant diffusing species in the whole interfacial reaction process.By measuring the thickness of different layers,the growth constant was calculated.It increases from 1.89(±0.03)×10^(-12)m^(2)·s^(-1)at 700℃ to 3.05(±0.05)×10^(-12)m^(2)·s^(-1)at 750℃,and 5.18(±0.05)×10^(-12)m^(2)·s^(-1)at 800℃.Meanwhile,the content of Fe is linearly increased in AZ91D with the increase of holding time at 700℃ and 750℃,while it shows a significantly increment after holding for 8 h at 800℃,indicating holding temperature is more crucial to determine the Fe content of AZ91D than holding time.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金Funded by the National Natural Science Foundation of China(No.11962024)Key Technology Project of Inner Mongolia Autonomous Region(No.2019GG031)。
文摘The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to evaluate the low-temperature crack resistance of SAM and basalt asphalt mixture(BAM).Based on the digital image correlation technique(DIC),the strain field distribution and crack propagation of SAM were analyzed from the microscopic point of view,and a new index,crack length factor(C),was proposed to evaluate the crack resistance of the asphalt mixture.The crystal phase composition and microstructure of steel slag aggregate(SA)and basalt aggregate(BA)were studied by X-ray diffraction(XRD)and scanning electron microscopy(SEM)to explore the low-temperature crack resistance mechanism of SAM.Results show that the low-temperature crack resistance of SAM is better than that of BAM;SAM has good integrity and persistent elastic deformation,and its bending failure mode is a hysteretic quasi-brittle failure;The SA surface is evenly distributed with pores and has surface roughness.SA has the composition phase of alkaline aggregate-calcite(CaCO3),so it has good adhesion to asphalt,which reveals the mechanism of excellent low-temperature crack resistance of SAM.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
文摘Every year,the State of Qatar generates about 400,000 tons of steel slag and another 500,000 tons of gravel as a result of steel manufacturing and washing sand,respectively.The two materials(by-products)are not fully utilized to their best market values.At the same time,infrastructural renewal will take place in Qatar over the next ten years,and there will be a greater demand for aggregates and other construction materials as the country suffers from the availability of good aggregates.This paper presents results obtained on the use of steel slag,gravel and gabbro(control)in HMAC(hot mix asphalt concrete)paving mixtures and road bases and sub-bases.Tests were conducted in accordance with QCS-2010(Qatar Construction Specifications)and results were compared with QCS requirements for aggregates used in these applications.Based on the data obtained in this work,steel slag and gravel aggregates have a promising potential to be used in HMAC paving mixtures on Qatar’s roads,whether in asphalt base and asphalt wearing courses or as unbound aggregates in the base and sub-base pavement structure.
文摘Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.
基金Funded by the Key Public Welfare Special Project of Henan Province(No.201300311000)the Major Technical Innovation Project in Hubei Province of China(No.2020BED025)。
文摘Cement,phosphorous slag(PS),and steel slag(SS)were used to prepare low-carbon cementitious materials,and triisopropanolamine(TIPA)was used to improve the mechanical properties by controlling the hydration process.The experimental results show that,by using 0.06%TIPA,the compressive strength of cement containing 60%PS or 60%SS could be enhanced by 12%or 18%at 28 d.The presence of TIPA significantly affected the hydration process of PS and SS in cement.In the early stage,TIPA accelerated the dissolution of Al in PS,and the formation of carboaluminate hydrate was facilitated,which could induce the hydration;TIPA promoted the dissolution of Fe in SS,and the formation of Fe-monocarbonate,which was precipitated on the surface of SS,resulting in the postponement of hydration,especially for the high SS content.In the later stage,under the continuous solubilization effect of TIPA,the hydration of PS and SS could refine the pore structure.It was noted that compared with portland cement,the carbon emissions of cement-PS-TIPA and cement-SS-TIPA was reduced by 52%and 49%,respectively.
文摘Interface morphology has important influence on the bond quality of titanium clad steel plates. The mechanical properties of titanium clad steel plates with wavy and straight interfaces were investigated by tensile-shear tests and bending tests. The interface morphology of the plates was examined by optical microscopy (OM) and scanning electron microscopy (SEM). The experimental results show that the shear strength of a wavy interface is higher than that of a straight interface. A wavy interface is the guarantee for obtaining high shear strength to provide a greater shear resistance. During the maerobending process, cracks appear in the swirl of the wave tip and ferrotitanium intermetallies. For in-situ observing the bending process by SEM, the wave tip of a wavy interface and the massive ferrotitartium intermetallies of a straight interface are places where cracks initiate and propagate. The results are the same as those observed in the macrobending process. Became of high hardness, the wave tip and the massive ferrotitanium intermetallies are hard in terms of compatible deformation.
文摘In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC,and a Si-enriched layer on the bonding strength was clarified, and an industrial-scaled titanium-clad steel plate with shear strength over 200 MPa was produced with a carefully set schedule accordingly. It was found that hot rolling titanium-clad steel plates had a flat interface without obvious cracks. In the rolling process,both Ti and Fe atoms interdiflhsed,but Fe difthsed much faster than Ti. The Fe-diffused area consisted of three regions. After a high temperature heat treatment, the diffusion depth of Fe and Ti elements increased significantly and evident Si segregation and TiFe layers were identified. Thermal cracking initiated in the Si segregation layer and then propagated along the TiFe layer and Fe-diffused layer on the titanium side.
文摘An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process.
基金National Natural Science Foundation of China(Grant No.52078051)Fundamental Research Funds for the Central Universities(Grant No.310821163502)+1 种基金Technology Innovation Project of Shandong Department of Industry and Information(Grant No.Lugongxinji 2020-8)the Transportation Department of Shandong Province(Grant No.Lujiaokeji 2017-28).
文摘Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.
文摘We investigated the effects of calcination temperature(950-1450℃),steel slag content,and the total chromium content of steel slag on the Cr^(6+)contents of clinker samples produced using steel slags with different chromium contents.Additionally,the reactions of chromium in clinker(produced using steel slag)during calcination were studied.It is found that Cr^(6+)conversion increases with increasing calcination temperature to 1250℃,reaching a maximum of 43%-79%,before decreasing to 18%-42%at 1450℃.Cr^(6+)is mainly formed by the oxidation of trivalent chromium(Cr^(3+))during the solid-phase reaction stage of clinker calcination.Furthermore,the Cr^(6+)content of a clinker sample is proportional to the chromium content of its raw meal precursor and is mainly in the form of water-insoluble calcium chromate(CaCrO_(4)).The chromium in clinker is mainly distributed in tricalcium aluminate and tetracalcium aluminoferrite,however,some is present in silicate minerals.We expect to inform the monitoring and control of the Cr^(6+)content of clinker(produced using steel slag)and resulting cement.
基金Funded by National Natural Science Foundation of China(No.52278446)。
文摘In order to evaluate the feasibility of steel slag powder as filler,the coating properties of steel slag and limestone aggregate were compared by water boiling test,the micro morphology difierences between steel slag powder and mineral powder(limestone powder)were compared by scanning electron microscope(SEM),and the high-temperature rheological properties of asphalt mortar with difierent ratio of filler quality to asphalt quality(F/A)and difierent substitution rates of mineral powder(S/F)were studied by dynamic shear rheological test.The results show that the surface microstructure of steel slag powder is more abundant than that of mineral powder,and the adhesion of steel slag to asphalt is better than that of limestone.At the same temperature,the lower the ratio of S/F is,the greater the rutting factor and complex modulus will be.In addition,the complex modulus and rutting factor of the asphalt mortar increase with the increase of F/A,and the filler type and F/A have a negligible efiect on the phase angle.
基金Funding Statement:This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Energy shortage and the emission of greenhouse gases have become a global problem of urgent concern.Therefore,there is an urgent need to develop a low carbon building material.Geopolymers have become a hot topic due to their environmental sustainability and the feasibility of immobilizing industrial waste.In this paper,steel slag(SS)fines were investigated as auxiliary materials of blast furnace slag(BFS)based geopolymer.The hydration heat properties,flowability,compressive strength,sorptivity coefficient,X-ray diffraction(XRD),and scanning electron microscopy(SEM)of the geopolymer pastes were determined.The results showed that the incorporation of SS weakened the reactivity of the BFS-based geopolymer paste and improved the flow values of the paste.The compressive strength of the geopolymer with 20%SS content reached 117 MPa at 28 d.The geopolymer specimens with high compressive strength showed a low sorptivity coefficient.The microscopic results showed that the addition of the appropriate amount of SS reduced the cracks,improved the density of the geopolymer,and produced a geopolymer composite with excellent mechanical properties.
基金Key Research and Development Plan of Shaanxi Province(2019TSLGY05-04).
文摘The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.
基金supported by the National Key Research and Development Program of China(No.2021YFB3802005)the National Natural Science Foundation of China(Grant No.51978002)+1 种基金the Natural Science Foundation for the Higher Education Institutions in Anhui Province of China(Grant No.KJ2020A0845)the Housing and Urban-Rural Construction Science and Technology Plan in Anhui Province of China(Grant No.2021-YF69).
文摘This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage).
基金financially supported by the National Natural Science Foundation of China(No.51972019)the National Key Research and Development Program of China(No.2019YFC1905702)。
文摘Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method.First,the effective thermal conductivity of the granular bed was calculated.Then,the unsteady-state model was used to simulate the heat recovery under three different flow fields(O-type,S-type,and nonshielding type(Nontype)).Second,the simulation results were validated by in-situ industrial experiments.The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype,S-type,and O-type.Finally,heat recovery was carried out under the Nontype flow field in an industrial test.The heat recovery efficiency increased from~76%and~78%to~81%when the steel slag thickness decreased from 400 and 300 to 200 mm,corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m^(3)/h.Therefore,the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field.Most importantly,the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale.