Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the ...Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.展开更多
Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates ...Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.展开更多
The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the...The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.展开更多
Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is...Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.展开更多
Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular...Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.展开更多
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia...Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.展开更多
The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors design...The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors designed the machines and tools of pressure grouting,determined the operating manufacture and technology parameter on the pressure grouting secondly.The result shows that the pressure grouting pile of driven tube not only changes the pile type but also reduce the length of the pile and its engineering cost,it enhances the load bearing capacity of single pile an the same time.展开更多
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic later...An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.展开更多
Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-field environment.The influence of Ca2+and Mg2+ on the corrosion rate and morphologies of corrosion product layer was...Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-field environment.The influence of Ca2+and Mg2+ on the corrosion rate and morphologies of corrosion product layer was determined by scanning electron microscope and measuring mass loss.Potentiodynamic polarization and impedance spectroscopy were used to investigate the change of electrochemical characteristic parameters of corrosion product layer and corrosion dynamic process.The results show that with Ca2+ and Mg2+ in electrolyte,the morphologies and microstructures of corrosion product layer changed obviously,thus affecting the corrosion process.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a doubl...In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.展开更多
To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact th...To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire.展开更多
A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the eff...A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance ...In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.展开更多
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee...In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.展开更多
Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flex...Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
基金supported by financial support from the National Natural Science Foundation of China(U1904177)the Excellent Youth Natural Science Foundation of Henan Province of China(212300410079)+2 种基金the Subproject of the Key Project of the National Development and Reform Commission of China(202203001)the Project of Young Key Teachers in Henan Province of China(2019GGJS01)Horizontal Research Projects(20230352A).
文摘Grouting defects are an inherent challenge in construction practices,exerting a considerable impact on the operational structural integrity of connections.This investigation employed the impact-echo technique for the detection of grouting anomalies within connections,enhancing its precision through the integration of wavelet packet energy principles for damage identification purposes.A series of grouting completeness assessments were meticulously conducted,taking into account variables such as the divergent material properties of the sleeves and the configuration of adjacent reinforcement.The findings revealed that:(i)the energy distribution for the highstrength concrete cohort predominantly occupied the frequency bands 42,44,45,and 47,whereas for other groups,it was concentrated within the 37 to 40 frequency band;(ii)the delineation of empty sleeves was effectively discernible by examining the wavelet packet energy ratios across the spectrum of frequencies,albeit distinguishing between sleeves with 50%and full grouting density proved challenging;and(iii)the wavelet packet energy analysis yielded variable detection outcomes contingent on the material attributes of the sleeves,demonstrating heightened sensitivity when applied to ultrahigh-performance concrete matrices and GFRP-reinforced steel bars.
基金support from 111 Project(Grant No.B18062)the Graduate Research and Innovation Foundation of Chongqing in China(Grant No.CYS20026)the National Key Research and Development Program of China(Grant No.2017YFC0703504).
文摘Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.
基金The authors are grateful for the financial support of the National Key Research and Development Program of China(2017YFC0703500).
文摘The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint.
基金The National Natural Science Foundation of China(No50178026)Program for New Century Excellent Talents in University+1 种基金the Key Technologies R & D Program of Heilongjiang Province(NoGC04A609)the Key Technologies R & D Program of Harbin City(No2004AA9CS187)
文摘Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515010095and 2023A1515010080)the Science and Technology Program of Guangzhou (Grant No. 202201010126)the Young Science and Technology Talent Support Project of Guangzhou Association for Science and Technology (Grant No. X20210201066)。
文摘Since fibre-reinforced polymer(FRP) and stainless steel(SS) offer advantages of corrosion resistance and hybrid confinement, this study proposed a new type of composite column: sea sand concrete(SSC)-filled SS tubular columns with an inner FRP tube(CFSTFs) to help exploit abundant ocean resources in marine engineering. To study compressive behaviours of these novel members, eight CFSTFs and two SSC-filled SS tubular columns(CFSTs)were tested under axial compression. Their axial load-displacement curves, axial load-strain curves in SS or FRP tubes were obtained, and influences of key test parameters(the existence of glass FRP(GFRP) tubes, steel tube shapes, and GFRP tube thicknesses and diameters) were discussed. Further, specimen failure mechanism was analyzed employing the finite element method using ABAQUS software. Test results confirmed the excellent ductility and load-bearing capacity of CFSTFs. The existence of GFRP tubes inside can postpone SS tube buckling, and the content of inner FRP tubes, particularly increasing diameters, was found to improve compressive behaviours. GFRP contents helped develop the second elastic-plastic stage of the load-displacement curves. Furthermore, the bearing capacity of CFSTFs with a circular cross-section was approximately 26% higher than that with a square cross-section, and this difference narrowed with the increase in GFRP ratios.
文摘Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.
文摘The pressure grouting pile of driven tube can improve the load bearing capacity of the single pile from the mechanism of pressure grouting pile of driven tube.On the basis of analyzing the mechanism,the authors designed the machines and tools of pressure grouting,determined the operating manufacture and technology parameter on the pressure grouting secondly.The result shows that the pressure grouting pile of driven tube not only changes the pile type but also reduce the length of the pile and its engineering cost,it enhances the load bearing capacity of single pile an the same time.
基金the National Natural Science Foundation of China under Grant Nos.51268004 and 51578163the Guangxi Science and Technology Key Project under Grant No.12118023-3
文摘An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.
基金Item Sponsored by National Natural Science Foundation of China(50231020)National Key Fundamental Research and Development Project of China(G1999065004)
文摘Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-field environment.The influence of Ca2+and Mg2+ on the corrosion rate and morphologies of corrosion product layer was determined by scanning electron microscope and measuring mass loss.Potentiodynamic polarization and impedance spectroscopy were used to investigate the change of electrochemical characteristic parameters of corrosion product layer and corrosion dynamic process.The results show that with Ca2+ and Mg2+ in electrolyte,the morphologies and microstructures of corrosion product layer changed obviously,thus affecting the corrosion process.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金Science and Technology Key Project of Beijing Under Grant No.D0905060370000National Natural Science Foundation of China Under Grant No.50878007+1 种基金Project High-level Personnel in Beijing Under Grant No.PHR20100502the Scientific and Technological Planning of Beijing Key Project Education Commission Under Grant No.KZ200910005008
文摘In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear wails tested.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708028)the Postdoctoral Foundation of Heilongjiang Province(GrantNo.LBH-Q07048)
文摘To predicate the temperature distribution of concrete-filled steel tubes(CFSTs) being exposure to fire,a finite element analysis model was developed using a finite element package,ANSYS.A suggested value of contact thermal resistance was therefore proposed with the supporting of massive numbers of collected test data.Parametric analysis was conducted subsequently towards the cross-sectional temperature distribution of CFST columns in four-side fire,in which the exposure time,width of the cross section,steel ratio were taken into account with considering contact thermal resistance.It was found that contact thermal resistance has little effect on the overall temperature regulation with the exposure time,the width of cross-section or the change of steel ratio.However,great temperature dropping at the concrete adjacent to the contact interface,and gentle temperature increase at steel tube,exist if considering contact thermal resistance.The results of the study are expected to provide theoretical basis for the fire resistance behavior and design of the CFST columns being exposure to fire.
基金the National Natural Science Foundation of China under Grant Nos.51408346 and 51438007the Shanghai Science and Technique Committee under Grant No.14231201300
文摘A model for evaluating structural damage of recycled aggregate concrete filled steel tube (RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate (RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes (CFST).
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
基金Funded by the National Natural Science Foundation of China(Grant No. 51178119)
文摘In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe.
文摘In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.
文摘Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.