This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work...This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.展开更多
A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present se...A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present serviceability issues in such structures.To alleviate vibrations,both the walking forces excited by humans and the associated floor responses must be elucidated.In this study,150 load–time histories of walking,excited by 25 test participants,are obtained using a force measuring plate.The dynamic loading factors and phase angles in the Fourier series functions for one-step walking are determined.Subsequently,walking tests are performed on seven CBHCS specimens to capture the essential dynamic properties of mode shapes,natural frequencies,damping ratios,and acceleration time histories.The CBHCS floor system generally exhibits a high frequency(>10 Hz)and low damping(damping ratio<2%).Sensitivity studies using the finite element method are conducted to investigate the vibration performance of the CBHCS floor system,where the floor thickness,steel beam type,contact time,and human weight are considered.Finally,analytical expressions derived for the fundamental frequency and peak acceleration agree well with the experimental results and are hence proposed for practical use.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
文摘This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.
基金The authors acknowledge the financial support provided by the National Natural Science Foundation of China(51890902 and 51708058).
文摘A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present serviceability issues in such structures.To alleviate vibrations,both the walking forces excited by humans and the associated floor responses must be elucidated.In this study,150 load–time histories of walking,excited by 25 test participants,are obtained using a force measuring plate.The dynamic loading factors and phase angles in the Fourier series functions for one-step walking are determined.Subsequently,walking tests are performed on seven CBHCS specimens to capture the essential dynamic properties of mode shapes,natural frequencies,damping ratios,and acceleration time histories.The CBHCS floor system generally exhibits a high frequency(>10 Hz)and low damping(damping ratio<2%).Sensitivity studies using the finite element method are conducted to investigate the vibration performance of the CBHCS floor system,where the floor thickness,steel beam type,contact time,and human weight are considered.Finally,analytical expressions derived for the fundamental frequency and peak acceleration agree well with the experimental results and are hence proposed for practical use.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.