A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength gr...For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength grades of the concrete and the span-depth ratios of the composite wall, which have impacts on the shear resistance performance of the composite shear wail, are analyzed by the numerical simulation method. Meanwhile, the simplified calculation formulae of the initial elastic lateral-resisting stiffness and the shear bearing capacity of the composite shear wall are also proposed. The research shows that with the increase in the thicknesses of the steel plates and the concrete and the increase in the strength grades of the concrete, the shear performance of the shear wall improves obviously; the span-depth ratios of the composite wall have a significant effect on the initial elastic lateral- resisting stiffness, but a small effect on the shear bearing capacity. Comparing the results of the simplified calculation formulae with those of the nonlinear finite element method, it is obvious that the presented formulae are reasonable and meet the real force state of the structure. These conclusions can serve as a preliminary design reference for the steel-concrete- steel composite shear wall.展开更多
Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyze...Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.展开更多
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing para...The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.展开更多
Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dy...Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dynamic behavior investigation of these structures has significance in theory and practice. However, so far dynamic study on the above-mentioned structures is limited only the rotating composite beams with piezoelectric actuation. The free vibration of the rotating composite thin-walled beams with shape memory alloy(SMA) fiber actuation is studied. SMA fiber actuators are embedded into the walls of the composite beam. The equations of motion are derived based on Hamilton's principle and the asymptotically correct constitutive relation of single-cell cross-section accounting for SMA fiber actuation. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin's method. The formulation for free vibration analysis includes anisotropy, pitch and precone angle, centrifugal force and SMA actuation effect. Numerical results of natural frequency are obtained for two configuration composite beams. It is shown that natural frequencies of the composite thin-walled beam decrease as SMA fiber volume and initial strain increase and the decrease in natural frequency becomes more significant as SMA fiber volume increases. The actuation performance of SMA fibers is found to be closely related to the rotational speeds and ply-angle. In addition, the effect of the pitch angle appears to be more significant for the lower-bending mode ones. Finally, in all cases, the precone angle appears to have marginal effect on free vibration frequencies. The developed model can be capable of describing natural vibration behaviors of rotating composite thin-walled beam with active SMA fiber actuation. The present work extends the previous analysis done for modeling passive rotating composite thin-walled beam.展开更多
This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing para...This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.展开更多
Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this rese...Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this research,ananalytical solution for the free vibration of a composite beamwith two overlapping delaminations is presented.The dela-minated beam is analyzed as seven interconnected beamsusing the delaminations as their boundaries.The continuityand equilibrium conditions are satisfied between the adjoin-ing regions of the beams.Classical beam theory is applied toeach of the beams.Complex vibration behaviors emerge fordifferent sizes and locations of the delaminations.Compar-ison with analytical results reported in the literature verifiesthe validity of the present solution.展开更多
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify ...Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beam and equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.展开更多
A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces...A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
Taking two Laguerre-Gaussian beams with topological charge 1 = ±1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre-Gaussian beams with different phases, amplitu...Taking two Laguerre-Gaussian beams with topological charge 1 = ±1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre-Gaussian beams with different phases, amplitudes, waist widths, off-axis distances, and their propagation in free space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β, amplitude ratio η, waist width ratio ξ, or off-axis distance ratio μ. The net topological charge lnet is not always equal to the sum lsum of charges of the two component beams. The motion, creation and annihilation of composite vortices take place in the free-space propagation, and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane.展开更多
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t...This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate dec...Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.展开更多
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica...In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.展开更多
In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unb...In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.展开更多
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
基金The Basic Scientific Research Funds of Hohai University (No. B1020133)
文摘For a deeper understanding of the shear resistance performance of the steel-concrete-steel composite shear wall, the main influence factors such as the thicknesses of the steel plates and the concrete, the strength grades of the concrete and the span-depth ratios of the composite wall, which have impacts on the shear resistance performance of the composite shear wail, are analyzed by the numerical simulation method. Meanwhile, the simplified calculation formulae of the initial elastic lateral-resisting stiffness and the shear bearing capacity of the composite shear wall are also proposed. The research shows that with the increase in the thicknesses of the steel plates and the concrete and the increase in the strength grades of the concrete, the shear performance of the shear wall improves obviously; the span-depth ratios of the composite wall have a significant effect on the initial elastic lateral- resisting stiffness, but a small effect on the shear bearing capacity. Comparing the results of the simplified calculation formulae with those of the nonlinear finite element method, it is obvious that the presented formulae are reasonable and meet the real force state of the structure. These conclusions can serve as a preliminary design reference for the steel-concrete- steel composite shear wall.
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
文摘Static load tests and bearing capacity analyses are carried out for two outer-plated steel-concrete continuous composite beams. The load-deflection curve and the load-strain curve of specimens are obtained and analyzed. The test results indicate that effective cooperation can be achieved by the shearresistant connection between the reinforcement in the negative moment area and the outer-plated steel beam, and the overall working performance of the composite beams is favorable. At the load-bearing limiting state, the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges. With the increase in the reinforcement ratio, the moment-carrying capacity of the composite beams improves significantly, but the ductility of the beams and the rotation ability of the plastic hinges decrease. The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data. The calculated results agree well with the test results.
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
基金Project(11ZR1417500) supported by Natural Science Foundation of Shanghai,China
文摘The welding property of TiB2/ZL101 composite was investigated using electron beam(EB) welding experimental system with a function generator.The fine defect-free welding seam was obtained under proper processing parameters and scanning rate.The reinforcement particles TiB2 distributed homogeneously in welding seam without any segregation.The tensile results show that fracture occurs at the base metal and elastic modulus increases compared with base metal.Wear resistance of welding seam is improved greatly compared with base metal.The results show that the TiB2/ZL101 composite can be successfully welded by EB technology.
基金supported by National Natural Science Foundation of China (Grant No. 10972124)Shandong Provincial Natural Science Foundation of China (Grant Nos. Y2006F37, ZR2011EEM031)Science & Technology Project of Shandong Provincial Education Department of China (Grant No. J08LB04)
文摘Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dynamic behavior investigation of these structures has significance in theory and practice. However, so far dynamic study on the above-mentioned structures is limited only the rotating composite beams with piezoelectric actuation. The free vibration of the rotating composite thin-walled beams with shape memory alloy(SMA) fiber actuation is studied. SMA fiber actuators are embedded into the walls of the composite beam. The equations of motion are derived based on Hamilton's principle and the asymptotically correct constitutive relation of single-cell cross-section accounting for SMA fiber actuation. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin's method. The formulation for free vibration analysis includes anisotropy, pitch and precone angle, centrifugal force and SMA actuation effect. Numerical results of natural frequency are obtained for two configuration composite beams. It is shown that natural frequencies of the composite thin-walled beam decrease as SMA fiber volume and initial strain increase and the decrease in natural frequency becomes more significant as SMA fiber volume increases. The actuation performance of SMA fibers is found to be closely related to the rotational speeds and ply-angle. In addition, the effect of the pitch angle appears to be more significant for the lower-bending mode ones. Finally, in all cases, the precone angle appears to have marginal effect on free vibration frequencies. The developed model can be capable of describing natural vibration behaviors of rotating composite thin-walled beam with active SMA fiber actuation. The present work extends the previous analysis done for modeling passive rotating composite thin-walled beam.
基金National Science and Technology Support Program Subtopics Under Grant No.2006BAJ03A10-07Changjiang Scholars Program of China
文摘This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.
文摘Delaminations in composite laminates may de-velop from small cracks due to fabrication and impact load-ing,or from places of high stress concentration.The locationsof the delaminations are not determinate.In this research,ananalytical solution for the free vibration of a composite beamwith two overlapping delaminations is presented.The dela-minated beam is analyzed as seven interconnected beamsusing the delaminations as their boundaries.The continuityand equilibrium conditions are satisfied between the adjoin-ing regions of the beams.Classical beam theory is applied toeach of the beams.Complex vibration behaviors emerge fordifferent sizes and locations of the delaminations.Compar-ison with analytical results reported in the literature verifiesthe validity of the present solution.
基金supported by the Defense Acquisition Program Administration (DAPA)the Agency for Defense Development (ADD) in Korea+1 种基金the Korea Research Foundation (KRF-2006-005-J03301)the National Research Foundation (Grant number: 2009-0083068).
文摘Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages.A thick IPMC actuator,where Nafion-117 membrane was synthesized with polypyrrole/alumina composite filler,was analyzed to verify the equivalent beam and equivalent bimorph beam models.The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively.The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data.Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator.The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data.It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement,blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.
基金The project supported by the National Natural Science Foundation of China(10172023)
文摘A new higher-order shear deformation theory based on global-local superposition technique is developed. The theory satisfies the free surface conditions and the geometric and stress continuity conditions at interfaces. The global displacement components are of the Reddy theory and local components are of the internal first to third-order terms in each layer. A two-node beam element based on this theory is proposed. The solutions are compared with 3D-elasticity solutions. Numerical results show that present beam element has higher computational efficiency and higher accuracy.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
基金supported by the National Natural Science Foundation of China (Grant No 10574097)
文摘Taking two Laguerre-Gaussian beams with topological charge 1 = ±1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre-Gaussian beams with different phases, amplitudes, waist widths, off-axis distances, and their propagation in free space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β, amplitude ratio η, waist width ratio ξ, or off-axis distance ratio μ. The net topological charge lnet is not always equal to the sum lsum of charges of the two component beams. The motion, creation and annihilation of composite vortices take place in the free-space propagation, and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane.
基金support of Reliance Industries and Bakaert Industries, India for providing fiber for the experimental work
文摘This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.
基金the financial support through Research University Grant Scheme 2007 (RUG 2007) with vote number 91045
文摘Selection of materials,as an area of design research,has been under considerable interest over the years.Materials selection is one of the most important activities in the product development process.Inappropriate decision of materials can cause the product to be reproduced or remanufactured.To avoid this circumstance,one of the useful tools that can be employed in determining the most appropriate material is analytical hierarchy process(AHP).To illustrate the application of AHP,six different types of composite materials were considered.The most appropriate one for suitability of use in manufacturing automotive bumper beam was determined by considering eight main selection factors and 12 sub-factors.The AHP analysis reveals that the glass fibre epoxy is the most appropriate material because it has the highest value(25.7%,mass fraction) compared with other materials.The final material is obtained by performing six different scenarios of the sensitivity analysis.It is proved that glass fibre epoxy is the most optimum decision.
基金The National Natural Science Foundation of China(No.51778183)the National Key Research and Development Program of China(No.2016YFC0701907)the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
文摘In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
基金Sponsored by the Changjiang Scholars Program of China(Grant No.2009-37)the National Natural Science Foundation of China(Grant No.50678050)
文摘In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.