Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of ma...Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.展开更多
Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismi...Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51768037)“Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University.”。
文摘Purpose–Under different ground motion excitation modes,the spatial coupling effect of seismic response for the arch bridge with thrust,seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.Design/methodology/approach–Taking a 490 m deck type railway steel truss arch bridge as the background,the dynamic calculation model of the whole bridge was established by SAP2000 software.The seismic response analyses under one-,two-and three-dimension(1D,2D and 3D)uniform ground motion excitations were carried out.Findings–For the steel truss arch bridge composed of multiple arch ribs,any single direction ground motion excitation will cause large axial force in the chord of arch rib.The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation.The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation.For the bottom chord of arch rib,the arch foot is the weak part of earthquake resistance,but for the upper chord of arch rib,the arch foot,arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts.The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force,but the normal stress of the upper chord of the arch rib is caused by the axial force,in-plane and out of plane bending moment.Originality/value–The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.
文摘Spatial structures such as a gymnasium and an exhibition hall often use ceilings because of enhancing sound effects and reducing heating bills. Although the ceiling members fell down on a large scale due to the seismic motion according to the past great earthquake disaster reports, structural engineers particularly do not carry out the seismic design. The study gives structural engineers the equivalent static loads for the design of the earthquake-proof design of the ceiling system. In particular, it is significant to investigate the dynamic behavior and the applied seismic loads for the complicated vibration of the long span arch building structures with RC columns.