The present study used a microelectronic neural bridge comprised of electrode arrays for neural signal detection, functional electrical stimulation, and a microelectronic circuit including signal amplifying, processin...The present study used a microelectronic neural bridge comprised of electrode arrays for neural signal detection, functional electrical stimulation, and a microelectronic circuit including signal amplifying, processing, and functional electrical stimulation to bridge two separate nerves, and to restore the lost function of one nerve. The left leg of one spinal toad was subjected to external mechanical stimulation and functional electrical stimulation driving. The function of the left leg of one spinal toad was regenerated to the corresponding leg of another spinal toad using a microelectronic neural bridge. Oscilloscope tracings showed that the electromyographic signals from controlled spinal toads were generated by neural signals that controlled the spinal toad, and there was a delay between signals. This study demonstrates that microelectronic neural bridging can be used to restore neural function between different injured nerves.展开更多
The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the ...The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the measurement of waveforms in the contact voltage under the load of direct current(DC) 6 V(8-20 A)and breaking speed of 50.0 mm·s^(-1).A part of the observed results was presented as well as surface morphology of the contacts after electrical contact behavior,which shows some interesting and new phenomena.Molten bridges and arc could exist simultaneously.The stable molten bridge looks like cylindrical shape and then becomes needle tip at its rupture,the diameter and length of molten bridges both increase with the increase in current and the growth gradient of the diameter is larger than that of the length.The morphology and elemental distribution of the contact surface are changed by the behavior of electrical contact.展开更多
基金supported by the National Natural Science Foundation of China,No,90707005,61001046 and 61204018the Natural Science Foundation of Education Department of Jiangsu Province,No.11KJB510023the Special Foundation and Open Foundation of State Key Laboratory of Bioelectronics of Southeast University,No.2011E05
文摘The present study used a microelectronic neural bridge comprised of electrode arrays for neural signal detection, functional electrical stimulation, and a microelectronic circuit including signal amplifying, processing, and functional electrical stimulation to bridge two separate nerves, and to restore the lost function of one nerve. The left leg of one spinal toad was subjected to external mechanical stimulation and functional electrical stimulation driving. The function of the left leg of one spinal toad was regenerated to the corresponding leg of another spinal toad using a microelectronic neural bridge. Oscilloscope tracings showed that the electromyographic signals from controlled spinal toads were generated by neural signals that controlled the spinal toad, and there was a delay between signals. This study demonstrates that microelectronic neural bridging can be used to restore neural function between different injured nerves.
基金financially supported by the National Natural Science Foundation of China (Nos.51461023, 51267007,51164015,U1302272,515070575 and U1602275)the Natural Science Foundation of Yunnan Province (Nos.2010CD126, 2012FB195 and 2015FA042)+3 种基金the Yunnan Applied Basic Research Projects (No.2014FB164)the Innovation Team of Yunnan Province (No.2012HC027)the Technology innovation talents of Yunnan Province (No.2015HB024)the Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No.SKL-SPM-201526)。
文摘The electrical contact-high-speed imaging experimental system was developed to investigate the molten bridge phenomena of AgNi10 electrical contact material.The dimension of molten bridges was measured along with the measurement of waveforms in the contact voltage under the load of direct current(DC) 6 V(8-20 A)and breaking speed of 50.0 mm·s^(-1).A part of the observed results was presented as well as surface morphology of the contacts after electrical contact behavior,which shows some interesting and new phenomena.Molten bridges and arc could exist simultaneously.The stable molten bridge looks like cylindrical shape and then becomes needle tip at its rupture,the diameter and length of molten bridges both increase with the increase in current and the growth gradient of the diameter is larger than that of the length.The morphology and elemental distribution of the contact surface are changed by the behavior of electrical contact.