Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac...Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.展开更多
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte...In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.展开更多
The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main facto...The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%.展开更多
This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using fr...This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using free corrosion potential monitoring, Tafel potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results of this study showed a satisfactory corrosion-inhibiting efficiency of around 72.665% for the optimum content of 1%. This is due to the presence of a stable oxide layer that protects the metal against corrosion. To validate the concept of montmorillonite as a corrosion inhibitor in repair mortar, we now turn to the influence of montmorillonite on the mechanical properties of mortars in the hardened state. In this part, montmorillonite K-10 is added to the mortar by partial substitution of the cement by 5% and 10% of the cement mass. The aim of this study is to ensure that the addition of this clay to the mortar composition will not have a negative effect on its compressive and flexural strengths. The results of the compression and flexural tests showed that the presence of montmorillonite in the mortar improved flexural and compressive strengths for the different compositions studied.展开更多
The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career ...The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.展开更多
Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initia...Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
The corrosion causes of rebar in concrete under corrosive environment are analyzed and discussed. It is mainly suffered from the penetration of corrosive species from environment in to the surface of rebar. Corrosio...The corrosion causes of rebar in concrete under corrosive environment are analyzed and discussed. It is mainly suffered from the penetration of corrosive species from environment in to the surface of rebar. Corrosion is initiated by penetration of chlorides and breakdown of passivation, and then propagated by crack of concrete induced by st ress from volume expansion of corrosion product of rebar in succession. Some eff ective countermeasures for corrosion prevention for reinforced concrete are brie fly specified and discussed. Finally, some important techniques commonly used or to be developed are also suggested.展开更多
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina...In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.展开更多
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
Beam stiffness degrades with its age in service and its service performance is weakened.According to the fundamental characteristics of the reinforced concrete,the influence of stiffness degradation caused by differen...Beam stiffness degrades with its age in service and its service performance is weakened.According to the fundamental characteristics of the reinforced concrete,the influence of stiffness degradation caused by different kinds of damage is obtained.Among them,the crack is the most direct and obvious factor.Furthermore,according to the analysis of bending rigidity formula presented in current standard,an influence parameter of crack development on the stiffness degradation,i.e.,nonuniformity coefficient of tensile steel strain φ,is extracted.Average crack distance and crack depth are taken as crack statistic parameters.Based on analysis and modeling with ANSYS,the modified bending rigidity formula related to crack is obtained.展开更多
A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake exci...A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake excitation have been dealt with. Based on a simplified structural model, which is shown to have a sufficient accuracy for the real slit shear wall structure, the analysis focuses on the influence of nonlinear behavior of the connecting beams between the slits on the dynamic performance of the whole slit shear wall structure. It has been found that the yielding of connecting beams in a slit shear wall can provide significant improvement in reducing the structural responses, and by choosing an appropriate strength value for the connecting beams, it is possible to optimize the seismic response of the slit shear wall.展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increas...An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.展开更多
Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we h...Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%.展开更多
In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels...In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels of blast loading using live explosives. The reflected pressure-time histories were recorded and different damage levels and modes were observed. The blast resilience of the damaged beams was quantified by measuring the time-dependent displacements. Experiment results show that the damage in steel reinforced concrete beams with higher explosive mass is enhanced compared with that of the beams with smaller explosive mass at the same scaled distance. Based on the experiment data, an empirical expression is developed via dimensional analysis to correct the relationship between the midspan displacement and scaled distance. Besides, a complex single degree of freedom model(SDOF)incorporating complex features of the material behavior, high strain-rate effect and the column geometry was proposed and validated by test results.展开更多
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an...Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.展开更多
In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after ...In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after impressed-current accelerated corrosion of the steel bars in concrete.The effects of steel corrosion rate,steel bar diameter,steel bar strength grade,and concrete strength grade on the bonding properties between concrete and corroded steel bars were analyzed.The influence of different corrosion rates on specimens’bonding strength and bond-slip curves was determined,and a constitutive relationship for bond-slip between corroded steel bars and concrete was proposed.The results indicate that the ultimate bonding strength of corroded reinforced concrete specimens decreases with increasing corrosion rate.Additionally,an increase in corrosive crack width leads to a linear decrease in bonding strength.Evaluating the decline in adhesive properties through rust expansion crack width in engineering applications is feasible.Furthermore,a bond-slip constitutive relationship between corroded steel bars and concrete was established using relative bond stress and relative slip values,which aligned well with the experimental findings.展开更多
基金the National Natural Science Foundation of China(Qing Zhang,Nos.11932006,U1934206,12172121)the Fundamental Research Funds for the Central Universities(Xin Gu,No.B210201031).
文摘Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.
文摘In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.
文摘The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%.
文摘This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using free corrosion potential monitoring, Tafel potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results of this study showed a satisfactory corrosion-inhibiting efficiency of around 72.665% for the optimum content of 1%. This is due to the presence of a stable oxide layer that protects the metal against corrosion. To validate the concept of montmorillonite as a corrosion inhibitor in repair mortar, we now turn to the influence of montmorillonite on the mechanical properties of mortars in the hardened state. In this part, montmorillonite K-10 is added to the mortar by partial substitution of the cement by 5% and 10% of the cement mass. The aim of this study is to ensure that the addition of this clay to the mortar composition will not have a negative effect on its compressive and flexural strengths. The results of the compression and flexural tests showed that the presence of montmorillonite in the mortar improved flexural and compressive strengths for the different compositions studied.
文摘The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed.
文摘Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
文摘The corrosion causes of rebar in concrete under corrosive environment are analyzed and discussed. It is mainly suffered from the penetration of corrosive species from environment in to the surface of rebar. Corrosion is initiated by penetration of chlorides and breakdown of passivation, and then propagated by crack of concrete induced by st ress from volume expansion of corrosion product of rebar in succession. Some eff ective countermeasures for corrosion prevention for reinforced concrete are brie fly specified and discussed. Finally, some important techniques commonly used or to be developed are also suggested.
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
基金The National Key Technology R&D Program of China(No.2014BAK11B04)the National Natural Science Foundation of China(No.51528802,51408126)the Natural Science Foundation of Jiangsu Province(No.BK20140631)
文摘In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
基金Supported by the Communication Scientific Research Project of Jiangsu Province(06Y21)~~
文摘Beam stiffness degrades with its age in service and its service performance is weakened.According to the fundamental characteristics of the reinforced concrete,the influence of stiffness degradation caused by different kinds of damage is obtained.Among them,the crack is the most direct and obvious factor.Furthermore,according to the analysis of bending rigidity formula presented in current standard,an influence parameter of crack development on the stiffness degradation,i.e.,nonuniformity coefficient of tensile steel strain φ,is extracted.Average crack distance and crack depth are taken as crack statistic parameters.Based on analysis and modeling with ANSYS,the modified bending rigidity formula related to crack is obtained.
文摘A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake excitation have been dealt with. Based on a simplified structural model, which is shown to have a sufficient accuracy for the real slit shear wall structure, the analysis focuses on the influence of nonlinear behavior of the connecting beams between the slits on the dynamic performance of the whole slit shear wall structure. It has been found that the yielding of connecting beams in a slit shear wall can provide significant improvement in reducing the structural responses, and by choosing an appropriate strength value for the connecting beams, it is possible to optimize the seismic response of the slit shear wall.
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
基金The National Natural Science Foundation of China(No. 50808043)the National Basic Research Program of China (973 Program) (No. 2009CB623200)Foundation of Jiangsu Key Laboratory of Construction Materials,Program for Special Talents in Six Fields of Jiangsu Province(No. 2011-JZ-010)
文摘An engineered cementitious composite (ECC) is introduced to partially substitute concrete in the tension zone of a reinforced concrete beam to form an ECC/reinforced concrete (RC) composite beam, which can increase the ductility and crack resisting ability of the beam. Based on the assumption of the plane remaining plane and the simplified constitutive models of materials, the stress and strain distributions along the depth of the composite beam in different loading stages are comprehensively investigated to obtain calculation methods of the load-carrying capacities for different stages. Also, a simplified formula for the ultimate load carrying capacity is proposed according to the Chinese code for the design of concrete structures. The relationship between the moment and curvature for the composite beam is also proposed together with a simplified calculation method for ductility of the ECC/RC composite beam. Finally, the calculation method is demonstrated with the test results of a composite beam. Comparison results show that the calculation results have good consistency with the test results, proving that the proposed calculation methods are reliable with a certain theoretical significance and reference value.
文摘Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%.
基金supported by The National Natural Science Foundation of China under Grant No.11390362 and No.11221202
文摘In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels of blast loading using live explosives. The reflected pressure-time histories were recorded and different damage levels and modes were observed. The blast resilience of the damaged beams was quantified by measuring the time-dependent displacements. Experiment results show that the damage in steel reinforced concrete beams with higher explosive mass is enhanced compared with that of the beams with smaller explosive mass at the same scaled distance. Based on the experiment data, an empirical expression is developed via dimensional analysis to correct the relationship between the midspan displacement and scaled distance. Besides, a complex single degree of freedom model(SDOF)incorporating complex features of the material behavior, high strain-rate effect and the column geometry was proposed and validated by test results.
基金financially supported by the National Key Basic Research Development Plan of China(973 Program,Grant No.2015CB655102)the National Natural Science Foundation of China(Grant Nos.51508272 and 51678304)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180433)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630558)the Open Research Funds for State Key Laboratory of High Performance Civil Engineering Materials(Grant No.2015CEM001)
文摘Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.
基金Scientific Research Fund of Hunan Provincial Education Department(21A0123)。
文摘In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after impressed-current accelerated corrosion of the steel bars in concrete.The effects of steel corrosion rate,steel bar diameter,steel bar strength grade,and concrete strength grade on the bonding properties between concrete and corroded steel bars were analyzed.The influence of different corrosion rates on specimens’bonding strength and bond-slip curves was determined,and a constitutive relationship for bond-slip between corroded steel bars and concrete was proposed.The results indicate that the ultimate bonding strength of corroded reinforced concrete specimens decreases with increasing corrosion rate.Additionally,an increase in corrosive crack width leads to a linear decrease in bonding strength.Evaluating the decline in adhesive properties through rust expansion crack width in engineering applications is feasible.Furthermore,a bond-slip constitutive relationship between corroded steel bars and concrete was established using relative bond stress and relative slip values,which aligned well with the experimental findings.