The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
采动应力诱发的动力灾害是制约急斜特厚煤层群安全开采的难题之一。以乌鲁木齐矿区乌东煤矿动力灾害防控为目标,采用开采技术条件调查、理论分析、数值计算和现场监测等方法与手段,揭示采动应力畸变致诱动力灾害机理。研究表明:43号煤...采动应力诱发的动力灾害是制约急斜特厚煤层群安全开采的难题之一。以乌鲁木齐矿区乌东煤矿动力灾害防控为目标,采用开采技术条件调查、理论分析、数值计算和现场监测等方法与手段,揭示采动应力畸变致诱动力灾害机理。研究表明:43号煤层产生的采动应力经其顶煤传导作用至层间夹持煤岩柱(sandwiched coal-rock pillar in seams,SCPS),同时受自重作用SCPS发生大变形,造成其倾向上部层位受拉伸应力而倾向下部层位受压缩应力,引发45号煤层+575水平南巷顶板应力高度集中,导致动力灾害频发。针对43号煤层工作面高于45号煤层工作面的开采布局,制定"先注水后爆破"解危措施。现场监测结果表明微震大事件频率由4.0次/min降至1.0次/min,电磁辐射峰值强度降至42.8 m V,动力灾害得到有效控制。展开更多
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
文摘采动应力诱发的动力灾害是制约急斜特厚煤层群安全开采的难题之一。以乌鲁木齐矿区乌东煤矿动力灾害防控为目标,采用开采技术条件调查、理论分析、数值计算和现场监测等方法与手段,揭示采动应力畸变致诱动力灾害机理。研究表明:43号煤层产生的采动应力经其顶煤传导作用至层间夹持煤岩柱(sandwiched coal-rock pillar in seams,SCPS),同时受自重作用SCPS发生大变形,造成其倾向上部层位受拉伸应力而倾向下部层位受压缩应力,引发45号煤层+575水平南巷顶板应力高度集中,导致动力灾害频发。针对43号煤层工作面高于45号煤层工作面的开采布局,制定"先注水后爆破"解危措施。现场监测结果表明微震大事件频率由4.0次/min降至1.0次/min,电磁辐射峰值强度降至42.8 m V,动力灾害得到有效控制。