In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of ...For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa.展开更多
To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was...To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.展开更多
Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practi...Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practice, but also develops the mining theory. By using physical simulation experiments, numerical simulation and site test, the deformation, failure and movement of surrounding rock in Iongwall working face were analyzed. According to the analysis, characteristics of the seam group were formed which is different from the single seam. Asymmetry mechanics, sequential changes and imbalance of strata movement along the tendency working face were summarized. Furthermore the features of upper and lower seams were different. The mining of the lower seam induced more complex strata movement along the strike. Multi-section mining disturbed surrounding rocks in larger areas than the single section mining did, which had an impact on and dynamic loading function to the support when mining the lower seam, and produced a great influence on the stability of support-rock system.展开更多
The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical...The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.展开更多
Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete eleme...Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.展开更多
This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pr...This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.展开更多
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金funds supported by the Key Program of National Natural Science Foundation of China(No.51634007)
文摘For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa.
基金the Joint Funds of the National Natural Science Foundation of China (No. U1361209)the National Basic Research Program of China (No. 2013CB227903)
文摘To improve the effectiveness of control of surrounding rock and the stability of supports on longwall topcoal caving faces in steeply inclined coal seams, the stability of the roof structure and hydraulic supports was studied with physical simulation and theoretical analysis. The results show that roof strata in the vicinity of the tail gate subside extensively with small cutting height, while roof subsidence near the main gate is relatively assuasive. With increase of the mining space, the caving angle of the roof strata above the main gate increases. The characteristics of the vertical and horizontal displacement of the roof strata demonstrate that caved blocks rotate around the lower hinged point of the roof structure, which may lead to sliding instability. Large dip angle of the coal seam makes sliding instability of the roof structure easier.A three-hinged arch can be easily formed above both the tail and main gates in steeply inclined coal seams. With the growth in the dip angle, subsidence of the arch foot formed above the main gate decreases significantly, which reduces the probability of the roof structure becoming unstable as a result of large deformation, while the potential of the roof structure's sliding instability above the tail gate increases dramatically.
基金the New Century Excellent Talents in University of China(NCET-04-972)
文摘Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practice, but also develops the mining theory. By using physical simulation experiments, numerical simulation and site test, the deformation, failure and movement of surrounding rock in Iongwall working face were analyzed. According to the analysis, characteristics of the seam group were formed which is different from the single seam. Asymmetry mechanics, sequential changes and imbalance of strata movement along the tendency working face were summarized. Furthermore the features of upper and lower seams were different. The mining of the lower seam induced more complex strata movement along the strike. Multi-section mining disturbed surrounding rocks in larger areas than the single section mining did, which had an impact on and dynamic loading function to the support when mining the lower seam, and produced a great influence on the stability of support-rock system.
基金the National Natural Science Foundation of China(Grant No.51634007)the Graduate Innovation Fund Project of Anhui University of Science and Technology of China(Grant No.2019CX1003).
文摘The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.
基金Supported by the Scientific Research Business of China University of Mining & Technology (Beijing) (2009QZ04) the National Natural Science Foundation of China (50974123)
文摘Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.
文摘This paper analyzes the gas source of the horizontally sectioned fully mechanized caving face in the steeply inclined and extra-thick seam of Adaohai Coal Mine, and numerically simulates the stress distribution and pressure relief of the lower section coal after the upper section working face is mined. It theoretically analyzed the reasonable layout of the drainage boreholes, and designed the drainage borehole layout accordingly. In the upper and lower section of the working face, the actual drainage effect of the boreholes was inspected, and the air exhaust gas volume in the working face was statistically analyzed. It was confirmed that the layout of boreholes was reasonable, the gas control effect of working face was greatly improved and fully met the needs of safe mining. The control effect was greatly improved and the need for safe mining was fully met, and thus a gas drainage technology suitable for the coal seam storage conditions and mining technology of the Adaohai Coal Mine was found. That is to say: the gas emission from the working face of the section mining mainly comes from its lower coal body. Pre-draining the lower coal body of the section and depressurizing gas interception and drainage are the key to effectively solve the problem of gas emission from the working face. Drainage boreholes in the working face of the section should be arranged at high and low positions. The high-level boreholes are located about 2 m from the top of the working face, and the high-level boreholes are about 9 m away from the top of the working face. Through the pre drainage of high and low-level boreholes in advance and the interception and pressure relief drainage, the gas control in the horizontal sublevel fully mechanized caving mining face in steep and extra thick coal seam can realize a virtuous cycle.
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.