期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generalized Internal Model Robust Control for Active Front Steering Intervention 被引量:8
1
作者 WU Jian ZHAO Youqun +2 位作者 JI Xuewu LIU Yahui ZHANG Lipeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期285-293,共9页
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in orde... Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller. 展开更多
关键词 active front steering system generalized internal model robust control H_∞ optimization PID split-μ road
下载PDF
Reactive Navigation of Underwater Mobile Robot Using ANFIS Approach in a Manifold Manner 被引量:5
2
作者 Shubhasri Kundu Dayal R. Parhi 《International Journal of Automation and computing》 EI CSCD 2017年第3期307-320,共14页
Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations dur... Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot. 展开更多
关键词 Adaptive fuzzy inference system(ANFIS) error gradient optimal path obstacle avoidance behavior steering angle target seeking behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部