Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investi...Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.展开更多
基金supported by the National Natural Science Foundation of China(51564008,41662005)Natural Science Foundation of Guangxi Province(2019GXNSFBA245083)。
文摘Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.