Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivi...Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.展开更多
喀斯特流域是岩石风化碳汇的关键区域,同时也是CO_(2)逸散研究的热点区域。为探究喀斯特地下河涌出后CO_(2)分压(pCO_(2))及其逸散通量的时空变化格局,选择喀斯特流域巴马盘阳河为对象,分析水体的pH、碱度、总溶解性固体(TDS)、溶解无机...喀斯特流域是岩石风化碳汇的关键区域,同时也是CO_(2)逸散研究的热点区域。为探究喀斯特地下河涌出后CO_(2)分压(pCO_(2))及其逸散通量的时空变化格局,选择喀斯特流域巴马盘阳河为对象,分析水体的pH、碱度、总溶解性固体(TDS)、溶解无机碳(DIC)、溶解有机碳(DOC)、pCO_(2)的时空变化特征,探讨pCO_(2)的调控因素并估算了CO_(2)逸散通量。结果表明,流域内地下水碱度、TDS、DIC和pCO_(2)显著高于地表水,表明喀斯特碳酸盐风化释放大量DIC进入地下水,地下水涌出后产生CO_(2)逸散降低了地表水DIC含量和pCO_(2)。在时间尺度上,旱季常规地表、地下水的碱度、TDS、DIC、pCO_(2)、CO_(2)逸散通量均显著高于雨季,主要归结于雨季雨水的稀释效应。然而次降雨事件下地表、地下水的pH、碱度、TDS、DIC、DOC、pCO_(2)无显著性差异,可能由于降雨量不足或降雨持续时间短。研究期间,巴马盘阳河流域地表水、地下水CO_(2)逸散通量范围分别为-0.10~9.20 kg C m^(-2)year^(-1),-0.12~17.28kg C m^(-2)year^(-1),平均CO_(2)逸散通量分别为1.06±1.46 kg C m^(-2)year^(-1)和2.40±3.14 kg C m^(-2)year^(-1),远高于全球主要大型流域的平均CO_(2)逸散通量(0.64 kg Cm^(-2)year^(-1))。阐明喀斯特流域的CO_(2)逸散通量及其时空变化特征对准确评估河流碳收支状况与评估岩石风化碳汇具有重要意义。展开更多
Background:Stem CO_(2) efflux(E_(S))plays a critical role in the carbon budget of forest ecosystems.Thinning is a core practice for sustainable management of plantations.It is therefore necessary and urgent to study t...Background:Stem CO_(2) efflux(E_(S))plays a critical role in the carbon budget of forest ecosystems.Thinning is a core practice for sustainable management of plantations.It is therefore necessary and urgent to study the effect and mechanism of thinning intensity(TI)on E_(S).Methods:In this study,five TIs were applied in Larix principis-rupprechtii Mayr 21-,25-,and 41-year-old stands in North China in 2010.Portable infrared gas analyzer(Li-8100 A)was used to measure ES and its association with environmental factors at monthly intervals from May to October in 2013 to 2015.In addition,nutrients,wood structure and nonstructural carbon(NSC)data were measured in August 2016.Results:The results show that ES increased with increasing TI.The maximum ES values occurred at a TI of 35%(3.29,4.57 and 2.98μmol·m^(-2)·s^(-1))and were 1.54-,1.94-and 2.89-fold greater than the minimum E_(S) value in the CK stands(2.14,2.35 and 1.03μmol·m^(-2)·s^(-1))in July for the 21-,25-and 41-year-old forests,respectively.The E_(S) of the trees in low-density stands was more sensitive to temperature than that of the trees in high-density stands.Soluble sugars(SS)and temperature are the main factors affecting ES.When the stand density is low enough as 41-year-old L.principis-rupprechtii forests with TI 35%,bark thickness(BT)and humidity should be considered in addition to air temperature(T_(a)),wood temperature(T_(w)),sapwood width(SW),nitrogen concentration(N)and SS in the evaluation of ES.If a change in stand density is ignored,the CO_(2) released from individual 21-,25-and 41-year-old trees could be underestimated by 168.89%,101.94% and 200.49%,respectively.CO_(2) release was estimated based on the stem equation in combination with the factors influencing ES for reference.Conclusions:We suggest that it is not sufficient to conventional models which quantify ES only by temperature and that incorporating the associated drivers(e.g.density,SS,SW and N)based on stand density into conventional models can improve the accuracy of ES estimates.展开更多
The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes toge...The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.展开更多
Silvicultural practices applied in managed forest plantations may help counteract the effects of climate change by influencing soil surface CO_(2)efflux(Fs).Understanding the effects of silvicultural practices on Fs w...Silvicultural practices applied in managed forest plantations may help counteract the effects of climate change by influencing soil surface CO_(2)efflux(Fs).Understanding the effects of silvicultural practices on Fs will provide unbiased estimates of carbon fluxes and allow better silvicultural decisions for carbon sequestration.Therefore,we assessed how Fs differed seasonally across silvicultural practices(i.e.,stocking levels,clone,fertilization and weed control treatments)and evaluated the effects of soil temperature(Ts)and soil volumetric water content(θv)on Fs across these practices for a mid-rotation(14 year-old)Pinus radiata plantation in the Canterbury region of New Zealand.There were significant differences in Fs(p<0.05)over the four seasons,three levels of stocking,and five clones.The effects of fertilization and weed control applied 12 years previously on Fs were insignificant.Annual estimate of Fs(mean±1 standard deviation)from the study site was 22.7±7.1 t ha^(-1)a^(-1)in the form of CO_(2)(6.2±2.1 t ha^(-1)a^(-1)in the form of C).Fs values were consistently higher in plots with 1250 stems ha^(-1)compared to 2500 stems ha^(-1),which may be related to a strong soil resource limitation because of the close spacing in the latter plantation.Significant differences in Fs across clones suggest that variations in carbon partitioning might explain their growth performance.Silvicultural treatments influenced Fs response to soil temperature(p<0.05),resulting in models explaining 28-49%of the total variance in Fs.These findings provide insights into how silvicultural management decisions may impact Fs in mid-rotation radiata pine plantations,contributing towards developing more precise and unbiased plantation carbon budgets.展开更多
Aims Despite the importance of stem cO_(2)efflux(Es)in ecosystem carbon cycling and energy balance,little is known about temporal variation in the temperature coefficient(Q10)and sapwood nitrogen concen-trations([N])a...Aims Despite the importance of stem cO_(2)efflux(Es)in ecosystem carbon cycling and energy balance,little is known about temporal variation in the temperature coefficient(Q10)and sapwood nitrogen concen-trations([N])and their intrinsic links with Es.The objectives of this study were:(i)to examine the response of Es to temperature in a subalpine region and(ii)to explore the influence of stem diameter and[N]on Es.Also,we will test the hypothesis that(i)Es in trees has thermal acclimation and(ii)Es will be well correlated with diameter at breast height(DBH)and[N].Methods Here,a horizontally oriented soil chamber technique was applied to measure Es of Abies fabri in two subalpine forest stands in Southwestern china from May to December 2014.We also exam-ined the variability in Es,Q10 and[N]in trees and monitored the relationship between temperature,[N],DBH and Es.Important Findings During the measurement period,Es showed an apparent seasonal trend,following the change in air temperature,increasing from May and peaking in July,then continuously decreasing until December.The mean Es for the growing and dormant seasons were 1.45 and 0.25μmol·m^(−2)·s^(−1),respectively,and Es in the mature forest was sig-nificantly higher than in the immature forest.The area-based Es was positively correlated with DBH and sapwood width(SW),while volume-based Es showed negative relationship with DBH and SW.Across the five diameter classes,69.8-89.0%of the variation in Es could be explained by air temperature.The temperature sensitiv-ity(Q10)of Es ranged from 2.98 to 5.61 during the measurement period,with a higher Q10 appearing in the growing season than in the dormant season.There was a significant linear relationship(P<0.01)between[N]and Es(expressed based on two different units).Additionally,exponential models of Es against[N]and air temperature were applied to estimate Es.展开更多
The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle.An increasing number of research reports have indicated that...The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle.An increasing number of research reports have indicated that tree stem respiration determined with the commonlyapplied chamber gas exchange measuring system does not follow expectations regarding temperature relationships.This method is based on the nowadays widely-accepted theory that the respired CO_(2) in a tree stem would all diffuse outward into the atmosphere.However,it neglects partial CO_(2) that is dissolved in the xylem sap and is carried away by the transpirational stream.Scientists have started to realize that the respired CO_(2) measured with the chamber gas exchange method is only a portion of the total stem respiration(CO_(2) efflux),while the other portion,which is sometimes very substantial in quantity(thought to occupy maybe 15%-75%of the total stem respiration),is transported to the upper part of the stem and to the canopy by sap flow.This suggests that the CO_(2) produced by respiration is re-allocated within the stem.Accordingly,the change in CO_(2) efflux could be reflected in the rates of sap flow in addition to its dependence on temperature.Proper methods and instruments are required to quantify the internal and external CO_(2) fluxes in the trunk and their interaction with related environmental factors.展开更多
Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms...Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms underlying its responses.Methods:To explore the impact of prolonged drought on AR and HR,we conducted the 2-year measurements on soil CO_(2) effluxes in the 7th and 8th year of manipulated throughfall reduction(TFR)in a warm-temperate oak forest.Results:Our results showed long-term TFR decreased HR,which was positively related to bacterial richness.More importantly,some bacterial taxa such as Novosphingobium and norank Acidimicrobiia,and fungal Leptobacillium were identified as major drivers of HR.In contrast,long-term TFR increased AR due to the increased fine root biomass and production.The increased AR accompanied by decreased HR appeared to counteract each other,and subsequently resulted in the unchanged SR under the TFR.Conclusions:Our study shows that HR and AR respond in the opposite directions to long-term TFR.Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR.This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO_(2) effluxes under future droughts.展开更多
Aims Precipitation pulses and different land use practices(such as grazing)play important roles in regulating soil respiration and carbon balance of semiarid steppe ecosystems in Inner Mongolia.However,the interactive...Aims Precipitation pulses and different land use practices(such as grazing)play important roles in regulating soil respiration and carbon balance of semiarid steppe ecosystems in Inner Mongolia.However,the interactive effects of grazing and rain event magnitude on soil respiration of steppe ecosystems are still unknown.We conducted a manipulative experiment with simulated precipitation pulses in Inner Mongolia steppe to study the possible responses of soil respiration to different precipitation pulse sizes and to examine how grazing may affect the responses of soil respiration to precipitation pulses.Methods Six water treatments with different precipitation pulse sizes(0,5,10,25,50 and 100 mm)were conducted in the ungrazed and grazed sites,respectively.Variation patterns of soil respiration of each treatment were determined continuously after the water addition treatments.Important Findings Rapid and substantial increases in soil respiration occurred 1 day after the water treatments in both sites,and the magnitude and duration of the increase in soil respiration depended on pulse size.Significantly positive relationships between the soil respiration and soil moisture in both sites suggested that soil moisture was the most important factor responsible for soil respiration rate during rain pulse events.The ungrazed site maintained significantly higher soil moisture for a longer time,which was the reason that the soil respiration in the ungrazed site was maintained relatively higher rate and longer period than that in the grazed site after a rain event.The significant exponential relationship between soil temperature and soil respiration was found only in the plots with the high water addition treatments(50 and 100 mm).Lower capacity of soil water holding and lower temperature sensitivity of soil respiration in the grazed site indicated that degraded steppe due to grazing might release less CO_(2) to the atmosphere through soil respiration under future precipitation and temperature scenarios.展开更多
There are numerous studies conducted on biochar for its carbon (C) sequestration potential;however,there are limited studies available on the behavior of salt-affected soils related to biochar application.Therefore,mo...There are numerous studies conducted on biochar for its carbon (C) sequestration potential;however,there are limited studies available on the behavior of salt-affected soils related to biochar application.Therefore,more studies are needed to elucidate the mechanisms through which biochar affects saline soil properties.In this study,biochars were produced from solid waste at pyrolysis temperatures of 300,500,and 700?C (BC300,BC500,and BC700,respectively)and applied to a saline soil to evaluate their impacts on soil carbon dioxide (CO_(2)) efflux,C sequestration,and soil quality.A soil incubation experiment lasting for 107 d was conducted.The results showed that soil CO_(2) efflux rate,cumulative CO_(2) emission,active organic C (AOC),and organic matter (OM)significantly increased with BC300 application to a greater extent than those with BC500 and BC700 as compared to those in the no-biochar control (CK).However,soil C non-lability did not significantly increase in the treatments with biochars,except BC700,as compared to that in CK.Besides improving the soil quality by increasing the soil AOC and OM,BC300 showed positive impacts in terms of increasing CO_(2) emission from the saline soil,while BC500 and BC700 showed greater potentials of sequestering C in the saline soil by increasing the soil non-labile C fraction.The recalcitrance index (R50) values of BC500 and BC700 were>0.8,indicating their high stability in the saline soil.It could be concluded that biochars pyrolyzed at high temperatures (?500?C)could be suitable in terms of C sequestration,while biochars pyrolyzed at low temperatures (?300?C) could be suitable for improving saline soil quality.展开更多
基金partially supported by the US National Science Foundation(1903722,1243232)。
文摘Tropical forests store more than half of the world's terrestrial carbon(C)pool and account for one-third of global net primary productivity(NPP).Many terrestrial biosphere models(TBMs)estimate increased productivity in tropical forests throughout the 21st century due to CO_(2)fertilization.However,phosphorus(P)liaitations on vegetation photosynthesis and productivity could significantly reduce the CO_(2)fertilization effect.Here,we used a carbon-nitrogen-phosphorus coupled model(Dynamic Land Ecosystem Model;DLEM-CNP)with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during1860-2018.Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity.We further compared the simulations from DLEM-CNP,DLEM-CN,and DLEMC and the results showed that the inclusion of P processes reduced the CO_(2)fertilization effect on gross primary production(GPP)by 25%and 45%,and net ecosystem production(NEP)by 28%and 41%,respectively,relative to CN-only and C-on ly models.From the 1860s to the 2010s,the DLEM-CNP estimated that in tropical forests GPP increased by 17%,plant respiration(Ra)increased by 18%,ecosystem respiration(Rh)increased by 13%,NEP increased by 121%per unit area,respectively.Additionally,factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO_(2) fertilization effect had been offset by 135%due to deforestation from the 1860s to the 2010s.Our study highlights the importance of P limitation on the C cycle and the weakened CO_(2)fertilization effect resulting from P limitation in tropical forests.
文摘喀斯特流域是岩石风化碳汇的关键区域,同时也是CO_(2)逸散研究的热点区域。为探究喀斯特地下河涌出后CO_(2)分压(pCO_(2))及其逸散通量的时空变化格局,选择喀斯特流域巴马盘阳河为对象,分析水体的pH、碱度、总溶解性固体(TDS)、溶解无机碳(DIC)、溶解有机碳(DOC)、pCO_(2)的时空变化特征,探讨pCO_(2)的调控因素并估算了CO_(2)逸散通量。结果表明,流域内地下水碱度、TDS、DIC和pCO_(2)显著高于地表水,表明喀斯特碳酸盐风化释放大量DIC进入地下水,地下水涌出后产生CO_(2)逸散降低了地表水DIC含量和pCO_(2)。在时间尺度上,旱季常规地表、地下水的碱度、TDS、DIC、pCO_(2)、CO_(2)逸散通量均显著高于雨季,主要归结于雨季雨水的稀释效应。然而次降雨事件下地表、地下水的pH、碱度、TDS、DIC、DOC、pCO_(2)无显著性差异,可能由于降雨量不足或降雨持续时间短。研究期间,巴马盘阳河流域地表水、地下水CO_(2)逸散通量范围分别为-0.10~9.20 kg C m^(-2)year^(-1),-0.12~17.28kg C m^(-2)year^(-1),平均CO_(2)逸散通量分别为1.06±1.46 kg C m^(-2)year^(-1)和2.40±3.14 kg C m^(-2)year^(-1),远高于全球主要大型流域的平均CO_(2)逸散通量(0.64 kg Cm^(-2)year^(-1))。阐明喀斯特流域的CO_(2)逸散通量及其时空变化特征对准确评估河流碳收支状况与评估岩石风化碳汇具有重要意义。
基金funding from National Natural Science Foundation of China(No.31870387),China Scholarship Council.
文摘Background:Stem CO_(2) efflux(E_(S))plays a critical role in the carbon budget of forest ecosystems.Thinning is a core practice for sustainable management of plantations.It is therefore necessary and urgent to study the effect and mechanism of thinning intensity(TI)on E_(S).Methods:In this study,five TIs were applied in Larix principis-rupprechtii Mayr 21-,25-,and 41-year-old stands in North China in 2010.Portable infrared gas analyzer(Li-8100 A)was used to measure ES and its association with environmental factors at monthly intervals from May to October in 2013 to 2015.In addition,nutrients,wood structure and nonstructural carbon(NSC)data were measured in August 2016.Results:The results show that ES increased with increasing TI.The maximum ES values occurred at a TI of 35%(3.29,4.57 and 2.98μmol·m^(-2)·s^(-1))and were 1.54-,1.94-and 2.89-fold greater than the minimum E_(S) value in the CK stands(2.14,2.35 and 1.03μmol·m^(-2)·s^(-1))in July for the 21-,25-and 41-year-old forests,respectively.The E_(S) of the trees in low-density stands was more sensitive to temperature than that of the trees in high-density stands.Soluble sugars(SS)and temperature are the main factors affecting ES.When the stand density is low enough as 41-year-old L.principis-rupprechtii forests with TI 35%,bark thickness(BT)and humidity should be considered in addition to air temperature(T_(a)),wood temperature(T_(w)),sapwood width(SW),nitrogen concentration(N)and SS in the evaluation of ES.If a change in stand density is ignored,the CO_(2) released from individual 21-,25-and 41-year-old trees could be underestimated by 168.89%,101.94% and 200.49%,respectively.CO_(2) release was estimated based on the stem equation in combination with the factors influencing ES for reference.Conclusions:We suggest that it is not sufficient to conventional models which quantify ES only by temperature and that incorporating the associated drivers(e.g.density,SS,SW and N)based on stand density into conventional models can improve the accuracy of ES estimates.
基金supported by the National Natural Science Foundation of China(31670476 and 31100284)the Fundamental Research Funds for the Central Universities(2572016CA02)
文摘The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.
基金The work was supported by the NZ Ministry of Foreign Aff air and Trade(MFAT)’s NZAID Programme.
文摘Silvicultural practices applied in managed forest plantations may help counteract the effects of climate change by influencing soil surface CO_(2)efflux(Fs).Understanding the effects of silvicultural practices on Fs will provide unbiased estimates of carbon fluxes and allow better silvicultural decisions for carbon sequestration.Therefore,we assessed how Fs differed seasonally across silvicultural practices(i.e.,stocking levels,clone,fertilization and weed control treatments)and evaluated the effects of soil temperature(Ts)and soil volumetric water content(θv)on Fs across these practices for a mid-rotation(14 year-old)Pinus radiata plantation in the Canterbury region of New Zealand.There were significant differences in Fs(p<0.05)over the four seasons,three levels of stocking,and five clones.The effects of fertilization and weed control applied 12 years previously on Fs were insignificant.Annual estimate of Fs(mean±1 standard deviation)from the study site was 22.7±7.1 t ha^(-1)a^(-1)in the form of CO_(2)(6.2±2.1 t ha^(-1)a^(-1)in the form of C).Fs values were consistently higher in plots with 1250 stems ha^(-1)compared to 2500 stems ha^(-1),which may be related to a strong soil resource limitation because of the close spacing in the latter plantation.Significant differences in Fs across clones suggest that variations in carbon partitioning might explain their growth performance.Silvicultural treatments influenced Fs response to soil temperature(p<0.05),resulting in models explaining 28-49%of the total variance in Fs.These findings provide insights into how silvicultural management decisions may impact Fs in mid-rotation radiata pine plantations,contributing towards developing more precise and unbiased plantation carbon budgets.
基金This work was supported by National Nature Science Foundation of China(41471232)the Knowledge Innovation Priority Project of the Chinese Academy of Sciences(Grant No.KZCX2-EW-309).
文摘Aims Despite the importance of stem cO_(2)efflux(Es)in ecosystem carbon cycling and energy balance,little is known about temporal variation in the temperature coefficient(Q10)and sapwood nitrogen concen-trations([N])and their intrinsic links with Es.The objectives of this study were:(i)to examine the response of Es to temperature in a subalpine region and(ii)to explore the influence of stem diameter and[N]on Es.Also,we will test the hypothesis that(i)Es in trees has thermal acclimation and(ii)Es will be well correlated with diameter at breast height(DBH)and[N].Methods Here,a horizontally oriented soil chamber technique was applied to measure Es of Abies fabri in two subalpine forest stands in Southwestern china from May to December 2014.We also exam-ined the variability in Es,Q10 and[N]in trees and monitored the relationship between temperature,[N],DBH and Es.Important Findings During the measurement period,Es showed an apparent seasonal trend,following the change in air temperature,increasing from May and peaking in July,then continuously decreasing until December.The mean Es for the growing and dormant seasons were 1.45 and 0.25μmol·m^(−2)·s^(−1),respectively,and Es in the mature forest was sig-nificantly higher than in the immature forest.The area-based Es was positively correlated with DBH and sapwood width(SW),while volume-based Es showed negative relationship with DBH and SW.Across the five diameter classes,69.8-89.0%of the variation in Es could be explained by air temperature.The temperature sensitiv-ity(Q10)of Es ranged from 2.98 to 5.61 during the measurement period,with a higher Q10 appearing in the growing season than in the dormant season.There was a significant linear relationship(P<0.01)between[N]and Es(expressed based on two different units).Additionally,exponential models of Es against[N]and air temperature were applied to estimate Es.
基金National Natural Science Foundation of China (Grant No.30770328)the Natural Science Foundation of Guangdong Province (No.07006917)for support.
文摘The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle.An increasing number of research reports have indicated that tree stem respiration determined with the commonlyapplied chamber gas exchange measuring system does not follow expectations regarding temperature relationships.This method is based on the nowadays widely-accepted theory that the respired CO_(2) in a tree stem would all diffuse outward into the atmosphere.However,it neglects partial CO_(2) that is dissolved in the xylem sap and is carried away by the transpirational stream.Scientists have started to realize that the respired CO_(2) measured with the chamber gas exchange method is only a portion of the total stem respiration(CO_(2) efflux),while the other portion,which is sometimes very substantial in quantity(thought to occupy maybe 15%-75%of the total stem respiration),is transported to the upper part of the stem and to the canopy by sap flow.This suggests that the CO_(2) produced by respiration is re-allocated within the stem.Accordingly,the change in CO_(2) efflux could be reflected in the rates of sap flow in addition to its dependence on temperature.Proper methods and instruments are required to quantify the internal and external CO_(2) fluxes in the trunk and their interaction with related environmental factors.
基金supported by the National Key R&D Program of China(No.2018YFC0507301)by Research and Development Project of RIFEEP,Chinese Academy of Forestry(99802–2020).
文摘Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms underlying its responses.Methods:To explore the impact of prolonged drought on AR and HR,we conducted the 2-year measurements on soil CO_(2) effluxes in the 7th and 8th year of manipulated throughfall reduction(TFR)in a warm-temperate oak forest.Results:Our results showed long-term TFR decreased HR,which was positively related to bacterial richness.More importantly,some bacterial taxa such as Novosphingobium and norank Acidimicrobiia,and fungal Leptobacillium were identified as major drivers of HR.In contrast,long-term TFR increased AR due to the increased fine root biomass and production.The increased AR accompanied by decreased HR appeared to counteract each other,and subsequently resulted in the unchanged SR under the TFR.Conclusions:Our study shows that HR and AR respond in the opposite directions to long-term TFR.Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR.This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO_(2) effluxes under future droughts.
基金The National Natural Science Foundation of China(90511001 and 30521002)an Action Plan for the Development of Western China of Chinese Academy of Science(KZCX2-XB2-01-04)a Knowledge Innovation Project of Chinese Academy of Sciences(KSCX2-SW-127).
文摘Aims Precipitation pulses and different land use practices(such as grazing)play important roles in regulating soil respiration and carbon balance of semiarid steppe ecosystems in Inner Mongolia.However,the interactive effects of grazing and rain event magnitude on soil respiration of steppe ecosystems are still unknown.We conducted a manipulative experiment with simulated precipitation pulses in Inner Mongolia steppe to study the possible responses of soil respiration to different precipitation pulse sizes and to examine how grazing may affect the responses of soil respiration to precipitation pulses.Methods Six water treatments with different precipitation pulse sizes(0,5,10,25,50 and 100 mm)were conducted in the ungrazed and grazed sites,respectively.Variation patterns of soil respiration of each treatment were determined continuously after the water addition treatments.Important Findings Rapid and substantial increases in soil respiration occurred 1 day after the water treatments in both sites,and the magnitude and duration of the increase in soil respiration depended on pulse size.Significantly positive relationships between the soil respiration and soil moisture in both sites suggested that soil moisture was the most important factor responsible for soil respiration rate during rain pulse events.The ungrazed site maintained significantly higher soil moisture for a longer time,which was the reason that the soil respiration in the ungrazed site was maintained relatively higher rate and longer period than that in the grazed site after a rain event.The significant exponential relationship between soil temperature and soil respiration was found only in the plots with the high water addition treatments(50 and 100 mm).Lower capacity of soil water holding and lower temperature sensitivity of soil respiration in the grazed site indicated that degraded steppe due to grazing might release less CO_(2) to the atmosphere through soil respiration under future precipitation and temperature scenarios.
基金partially supported by the University Research Fund Program of the Quaid-i-Azam University, Pakistan。
文摘There are numerous studies conducted on biochar for its carbon (C) sequestration potential;however,there are limited studies available on the behavior of salt-affected soils related to biochar application.Therefore,more studies are needed to elucidate the mechanisms through which biochar affects saline soil properties.In this study,biochars were produced from solid waste at pyrolysis temperatures of 300,500,and 700?C (BC300,BC500,and BC700,respectively)and applied to a saline soil to evaluate their impacts on soil carbon dioxide (CO_(2)) efflux,C sequestration,and soil quality.A soil incubation experiment lasting for 107 d was conducted.The results showed that soil CO_(2) efflux rate,cumulative CO_(2) emission,active organic C (AOC),and organic matter (OM)significantly increased with BC300 application to a greater extent than those with BC500 and BC700 as compared to those in the no-biochar control (CK).However,soil C non-lability did not significantly increase in the treatments with biochars,except BC700,as compared to that in CK.Besides improving the soil quality by increasing the soil AOC and OM,BC300 showed positive impacts in terms of increasing CO_(2) emission from the saline soil,while BC500 and BC700 showed greater potentials of sequestering C in the saline soil by increasing the soil non-labile C fraction.The recalcitrance index (R50) values of BC500 and BC700 were>0.8,indicating their high stability in the saline soil.It could be concluded that biochars pyrolyzed at high temperatures (?500?C)could be suitable in terms of C sequestration,while biochars pyrolyzed at low temperatures (?300?C) could be suitable for improving saline soil quality.