Objective: To evaluate the efficacy based on clinical symptom and on magnetic resonance image of platelet-rich plasma therapy in combination with mesenchymal stem cells from autologous adipose tissue for knee osteoart...Objective: To evaluate the efficacy based on clinical symptom and on magnetic resonance image of platelet-rich plasma therapy in combination with mesenchymal stem cells from autologous adipose tissue for knee osteoarthritis treatment. Patients and Method: 30 patients including 26 females and 4 males;correspondingly, 60 knee joints were diagnosed with osteoarthritis with stages II - III of Kellgren and Lawrence, their mean age was 58.63 ± 11.11. All were injected with autologous platelet-rich plasma that was extracted by PRP set, APC 30 PRP PRCEDURE PRAK and autologously extracted mesenchymal stem cells from abdominal adipose tissue using the ADI-25-01 ADIPOSEPRCEDURE PRAK of USA. Results: After 12 months: the pain level according to VAS score at the right knee joint was decreased from 6.0 ± 1.28 before treatment to 1.9 ± 0.3;VAS score at the left knee joint was decreased from 6.43 ± 1.19 to 2.25 ± 0.43. Total Lequene score at right knee joint was decreased from 16.04 ± 1.57 before treatment to 4.31 ± 1.04, at left knee joint was decreased from 17.52 ± 1.74 before treatment to 5.15 ± 1.48. Total WOMAC score at right knee joint was decreased from 55.93 ± 5.56 to 10.37 ± 1.56;at left knee joint was decreased from 53.97 ± 5.57 to 10.07 ± 1.59. There were 86.77% joints with cartilage thickness change and the patellar cartilage thickness was increased from 1.56 ± 0.09 mm before treatment to 1.65 ± 0.09 mm. Conclusion: The treatment of knee osteoarthritis by platelet-rich plasma therapyin combination with mesenchymal stem cells from autologous adipose tissue is effective in reducing pain, improving patient's mobility and walking function, reforming articular cartilage thickness on magnetic resonance image.展开更多
With developments in the field of tissue engineering and regenerative medicine,the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians.Among a...With developments in the field of tissue engineering and regenerative medicine,the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians.Among all the available biological tissues,research and exploration of adipose tissue have become more robust.Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential.The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth,proliferation,and differentiation.Adipose tissue,apart from being the powerhouse of energy storage,also functions as the largest endocrine organ,with the release of various adipokines.The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues.The results of adipose-derived stemcell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis,fat graft integration,and survival within the recipient tissue and promote the regeneration of tissue are promising.Adipose tissue gives rise to various by-products upon processing.This article highlights the significance and the usage of various adipose tissue by-products,their individual characteristics,and their clinical applications.展开更多
Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regen...Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel- based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC- mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear cofactor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.展开更多
Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdM...Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 posfimmunization with 5 × 10^6 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 x 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 10^6 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 10^6 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.展开更多
BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for prevent...BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for preventing and treating rejection. This study was designed to confirm the immunomodulatory effects of rat mesenchymal stem cells (MSCs) in vitro and investigate the tolerogenic features in a rat model of allogeneic liver transplantation. METHODS: MSCs were isolated from adipose tissue of Sprague-Dawley (SD) rats and cultured. In vitro, MSCs were added into a mixed lymphocyte culture (MLC) system to study the inhibitory effects of MSCs on the proliferation of T lymphocytes in Wistar rats. By using SD and Wistar rats as liver donors and recipients, an orthotopic liver transplantation model was established and the rats were divided into a MSC-treated group and a blank control group. On postoperative day 7, all rats were sacrificed, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), interleukin-2 (IL-2) and interleukin-10 (IL-10) were measured. The pathological changes of liver tissue and apoptosis of hepatocytes were also assessed. RESULTS: In in vitro MLC, T lymphocyte proliferation in Wistar rats was significantly inhibited by 48.44%. In the MSC-treated group, the levels of ALT, AST, TBIL, IL-2 and IL-10 were 134.2 +/- 45.0 U/L, 162.5 +/- 30.5 U/L, 30.6 +/- 5.4 mu mol/L, 187.35 +/- 18.26 mu g/L and 193.95 +/- 37.62 mu g/L, and those in the blank control group were 355.6 +/- 54.3 U/L, 296.4 +/- 71.2 U/L, 145.7 +/- 28.6 +/- mol/L, 295.73 +/- 57.15 mu g/L and 75.12 +/- 11.23 mu g/L, respectively, with statistically significant differences (P<0.05). Pathological examination revealed that the rejection in the MSC-treated group was clearly alleviated compared with that in the blank control group. TUNEL indicated that the apoptosis of hepatocytes in the MSC-treated group was milder than that in the blank control group (P<0.05). CONCLUSION: Adipose-derived MSCs clearly inhibit recipient-derived T lymphocyte proliferation in MLC and significantly alleviate acute rejection following orthotopic liver transplantation in rats.展开更多
AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into h...AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thyl decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.展开更多
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the ...The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the role of adipose-derived stem cells,and the indications of adipose tissue grafting in peripheral nerve surgery.Adipose tissue is easily accessible through the lower abdomen and inner thighs.Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress,resulting in variable survival of adipocytes within the first 24 hours.Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts.Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization,and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue.In clinical studies,the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results.Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new,more studies are needed to explore safety and long-term effects on peripheral nerve regeneration.The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated,enzyme-free,and used in the same surgical procedure,e.g.adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction.Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival.Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.展开更多
Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent...Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.展开更多
Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determi...Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determining the impact of high-fat diets (HFD)-induced type 2 diabetes (T2D) on the differentiation potential of ASC. Results: C57BL/6J male mice were fed a vegetal (VD) or an animal (AD) HFD. Isolation of ACS from mice showing different levels of metabolic alterations reveals that advanced T2D did not affect the number of cells per gram of tissue. Rather, a higher proportion of inflammatory CD36+ cells was identified in HFD fed mice. Despite a marked decreased expression of adipogenic genes (aP2, C/EBPα and PPARγ2), ASC from HFD groups had a higher adipogenic potential and a lower endothelial differentiation potential in vitro compared to control. ASC from the VD group had enhanced cyclin B1 expression and had more adipogenic potential compared to AD group. Conclusion: Our results demonstrate that the metabolic modifications, linked to the nature of fatty acids in diets, modulate the differentiation potential of ASC with increased adipogenesis to the detriment of the endothelial pathway. Results highlight the importance of evaluating the ASC differentiation behavior in a context of autologous cell-based therapy for the repair of vascular tissues in diabetic patients.展开更多
This review comprehensively explores the versatile potential of mesenchymal stem cells(MSCs)with a specific focus on adipose-derived MSCs.Ophthalmic and oculoplastic surgery,encompassing diverse procedures for ocular ...This review comprehensively explores the versatile potential of mesenchymal stem cells(MSCs)with a specific focus on adipose-derived MSCs.Ophthalmic and oculoplastic surgery,encompassing diverse procedures for ocular and periocular enhancement,demands advanced solutions for tissue restoration,functional and aesthetic refinement,and aging.Investigating immunomodulatory,regenerative,and healing capacities of MSCs,this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside,addressing common unmet needs in the field of reconstructive and regenerative surgery.展开更多
BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,m...BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints.展开更多
The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bon...The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases.展开更多
Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breas...Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation from the stromal vascular fraction (SVF) of subcutaneous adipose tissue. Intraoperatory SVF/ASC enrichment has been proposed to stabilize and optimalize autologous fat engraftment for breast reconstructive surgery after mastectomy, but the safety of these procedures is still uncertain. Although the literature offers contrasting opinions concerning the effects of ASCs on cancer growth according to the tumor type, at the present time ASC implementation for regenerative medicine therapies should be carefully considered in patients previously treated for breast cancer. At the present, reconstructive therapy utilizing ASC-enriched fat grafting should be postponed until there is no evidence of active disease.展开更多
Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation,which are continuously regulated by signals from the extracellular matrix(ECM)microenvironment.Therefore...Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation,which are continuously regulated by signals from the extracellular matrix(ECM)microenvironment.Therefore,the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior.Although the acellular ECM of specific tissues and organs(such as the skin,heart,cartilage,and lung)can mimic the natural microenvironment required for stem cell differentiation,the lack of donor sources restricts their development.With the rapid development of adipose tissue engineering,decellularized adipose matrix(DAM)has attracted much attention due to its wide range of sources and good regeneration capacity.Protocols for DAM preparation involve various physical,chemical,and biological methods.Different combinations of these methods may have different impacts on the structure and composition of DAM,which in turn interfere with the growth and differentiation of stem cells.This is a narrative review about DAM.We summarize the methods for decellularizing and sterilizing adipose tissue,and the impact of these methods on the biological and physical properties of DAM.In addition,we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration(such as adipose tissue),repair(such as wounds,cartilage,bone,and nerves),in vitro bionic systems,clinical trials,and other disease research.展开更多
Dental stem cells can differentiate into different types of cells.Dental pulp stem cells,stem cells from human exfoliated deciduous teeth,periodontal ligament stem cells,stem cells from apical papilla,and dental folli...Dental stem cells can differentiate into different types of cells.Dental pulp stem cells,stem cells from human exfoliated deciduous teeth,periodontal ligament stem cells,stem cells from apical papilla,and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development.The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering.In recent years,three-dimensional(3D)tissue scaffolds have been used to reconstruct and restore different anatomical defects.With rapid advances in 3D tissue engineering,dental stem cells have been used in the regeneration of 3D engineered tissue.This review presents an overview of different types of dental stem cells used in 3D tissue regeneration,which are currently the most common type of stem cells used to treat human tissue conditions.展开更多
Bibliographic analysis is still very rarely used in experimental basic study papers.The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabeti...Bibliographic analysis is still very rarely used in experimental basic study papers.The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabetic chronic wounds,which was conducted in the work of Shi et al can be a case study and a source of valuable information for writing reviews and experimental papers in this field.Basic experimental studies on a role of mesenchymal stem cells(MSCs)in wound healing that are published in 2023-2024,such as Zhang et al in 2023,Hu et al in 2023,Wang et al in 2023 are certainly also subjects for applying this powerful tool to analyze current research,challenges and perspectives in this field.This is due to the fact that these studies have addressed a great variety of aspects of the application of MSCs for the treatment of chronic wounds,such as using both the cells themselves and their various products:Sponges,hydrogels,exosomes,and genetic constructions.Such a wide variety of directions in the field of study and biomedical application of MSCs requires a deep understanding of the current state of research in this area,which can be provided by bibliometric analysis.Thus,the use of such elements of bibliographic analysis as publication count by year and analysis of top-10 keywords calculated independently or cited from bibliometric analysis studies can be safely recommended for every basic study manuscripts,primarily for the“Introduction”section,and review.展开更多
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ...Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.展开更多
BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exo...BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.展开更多
The aim of the present review is to highlight the possible neuroregenerative potential ol adipose-derived stem cells. The key property of stem cells is plasticity including self-renewal, multilineage differentiation, ...The aim of the present review is to highlight the possible neuroregenerative potential ol adipose-derived stem cells. The key property of stem cells is plasticity including self-renewal, multilineage differentiation, and migration, whereas the required property is transplantability. For a long time, embryonic stem cells were thought to be the only source of pluripotency, a dogma that has been challenged during the last decade. Today, an alternative option might be adipose-derived stem cells, as easily accessible, ethical and autologous cellular source. Recent knowledge of adipobiology increasingly recognizes that adipose tissue is the major endo- and paracrine organ of the human body. Likewise, numerous neuropetides, neurotrophic factors, neurotransmitters, hypothalamic and steroid hormones and their receptors are shared by adipose tissue and brain. Accordingly, the regenerative potential of neuroprotective factor-secreting adipose-derived stem cells is outlined. Whether the possible benefits of adipose stem cell-based therapy may be mediated via cell transdifferentiation and/or paracrine mechanisms remains to further be evaluated.展开更多
Tissue inhibitor of m etalloprotease-1(TIM P-1)is a tissue inhibitor o f matrix metalloproteinases(MMPs).It however exerts multiple effects on biological processes,such as cell growth,proliferation,differentiation and...Tissue inhibitor of m etalloprotease-1(TIM P-1)is a tissue inhibitor o f matrix metalloproteinases(MMPs).It however exerts multiple effects on biological processes,such as cell growth,proliferation,differentiation and apoptosis,in an MMP-independent manner.This study aimed to examine the role of TIMP-1 in adipogenesis of adipose-derived stem cells(ASCs)and the underlying mechanism.We knocked down the TIMP-1 gene in ASCs through lentiviral vectors encoding TIMP-1 small interfering RNA(siRNA),and then found that the knockdown of TIMP-1 in ASCs promoted the adipogenic differentiation of stem cells and inhibited the Wnt/β-catenin signaling pathway in ASCs.We also noted that mutant TIMP-1 without the inhibitory activity on MMPs promoted the activation of Wnt/β-catenin pathway as well as the recombinant wild type TIMP-1 did,which indicated that the effect of TIMP-1 on Wnt/β-catenin pathway was MMPindependent.Our study suggested that TIMP-1 negatively regulated the adipogenesis of ASCs via the Wnt/β-catenin signaling pathway in an MMP-independent manner.展开更多
文摘Objective: To evaluate the efficacy based on clinical symptom and on magnetic resonance image of platelet-rich plasma therapy in combination with mesenchymal stem cells from autologous adipose tissue for knee osteoarthritis treatment. Patients and Method: 30 patients including 26 females and 4 males;correspondingly, 60 knee joints were diagnosed with osteoarthritis with stages II - III of Kellgren and Lawrence, their mean age was 58.63 ± 11.11. All were injected with autologous platelet-rich plasma that was extracted by PRP set, APC 30 PRP PRCEDURE PRAK and autologously extracted mesenchymal stem cells from abdominal adipose tissue using the ADI-25-01 ADIPOSEPRCEDURE PRAK of USA. Results: After 12 months: the pain level according to VAS score at the right knee joint was decreased from 6.0 ± 1.28 before treatment to 1.9 ± 0.3;VAS score at the left knee joint was decreased from 6.43 ± 1.19 to 2.25 ± 0.43. Total Lequene score at right knee joint was decreased from 16.04 ± 1.57 before treatment to 4.31 ± 1.04, at left knee joint was decreased from 17.52 ± 1.74 before treatment to 5.15 ± 1.48. Total WOMAC score at right knee joint was decreased from 55.93 ± 5.56 to 10.37 ± 1.56;at left knee joint was decreased from 53.97 ± 5.57 to 10.07 ± 1.59. There were 86.77% joints with cartilage thickness change and the patellar cartilage thickness was increased from 1.56 ± 0.09 mm before treatment to 1.65 ± 0.09 mm. Conclusion: The treatment of knee osteoarthritis by platelet-rich plasma therapyin combination with mesenchymal stem cells from autologous adipose tissue is effective in reducing pain, improving patient's mobility and walking function, reforming articular cartilage thickness on magnetic resonance image.
文摘With developments in the field of tissue engineering and regenerative medicine,the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians.Among all the available biological tissues,research and exploration of adipose tissue have become more robust.Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential.The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth,proliferation,and differentiation.Adipose tissue,apart from being the powerhouse of energy storage,also functions as the largest endocrine organ,with the release of various adipokines.The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues.The results of adipose-derived stemcell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis,fat graft integration,and survival within the recipient tissue and promote the regeneration of tissue are promising.Adipose tissue gives rise to various by-products upon processing.This article highlights the significance and the usage of various adipose tissue by-products,their individual characteristics,and their clinical applications.
基金funded by the National Natural Science Foundation of China(81771125,81471803,81671031)the Sichuan Province Youth Science and Technology Innovation Team(2014TD0001)
文摘Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel- based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC- mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear cofactor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.
文摘Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 posfimmunization with 5 × 10^6 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 x 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 10^6 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 10^6 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.
文摘BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for preventing and treating rejection. This study was designed to confirm the immunomodulatory effects of rat mesenchymal stem cells (MSCs) in vitro and investigate the tolerogenic features in a rat model of allogeneic liver transplantation. METHODS: MSCs were isolated from adipose tissue of Sprague-Dawley (SD) rats and cultured. In vitro, MSCs were added into a mixed lymphocyte culture (MLC) system to study the inhibitory effects of MSCs on the proliferation of T lymphocytes in Wistar rats. By using SD and Wistar rats as liver donors and recipients, an orthotopic liver transplantation model was established and the rats were divided into a MSC-treated group and a blank control group. On postoperative day 7, all rats were sacrificed, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), interleukin-2 (IL-2) and interleukin-10 (IL-10) were measured. The pathological changes of liver tissue and apoptosis of hepatocytes were also assessed. RESULTS: In in vitro MLC, T lymphocyte proliferation in Wistar rats was significantly inhibited by 48.44%. In the MSC-treated group, the levels of ALT, AST, TBIL, IL-2 and IL-10 were 134.2 +/- 45.0 U/L, 162.5 +/- 30.5 U/L, 30.6 +/- 5.4 mu mol/L, 187.35 +/- 18.26 mu g/L and 193.95 +/- 37.62 mu g/L, and those in the blank control group were 355.6 +/- 54.3 U/L, 296.4 +/- 71.2 U/L, 145.7 +/- 28.6 +/- mol/L, 295.73 +/- 57.15 mu g/L and 75.12 +/- 11.23 mu g/L, respectively, with statistically significant differences (P<0.05). Pathological examination revealed that the rejection in the MSC-treated group was clearly alleviated compared with that in the blank control group. TUNEL indicated that the apoptosis of hepatocytes in the MSC-treated group was milder than that in the blank control group (P<0.05). CONCLUSION: Adipose-derived MSCs clearly inhibit recipient-derived T lymphocyte proliferation in MLC and significantly alleviate acute rejection following orthotopic liver transplantation in rats.
基金Supported by the ALIVE Foundation, the FIS from Instituto de Salud Carlos III, Spain, No. 03/0339, and the European Commission, No. LSHB-CT-2004-504761
文摘AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thyl decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.
文摘The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the role of adipose-derived stem cells,and the indications of adipose tissue grafting in peripheral nerve surgery.Adipose tissue is easily accessible through the lower abdomen and inner thighs.Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress,resulting in variable survival of adipocytes within the first 24 hours.Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts.Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization,and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue.In clinical studies,the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results.Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new,more studies are needed to explore safety and long-term effects on peripheral nerve regeneration.The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated,enzyme-free,and used in the same surgical procedure,e.g.adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction.Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival.Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.
文摘Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.
基金This project was supported financially by grants from the Fondation des maladies du Coeur du Québec and from the Fondation de l’Institutde Cardiologie de Montréal to Dr Jean-Francois Tanguay.
文摘Background: Adipose tissue-derived stem cells (ASC) possess the ability to differentiate into adipocytes or endothelial cells to help in the adipogenesis, vasculogenesis and vascular repair. This study aims at determining the impact of high-fat diets (HFD)-induced type 2 diabetes (T2D) on the differentiation potential of ASC. Results: C57BL/6J male mice were fed a vegetal (VD) or an animal (AD) HFD. Isolation of ACS from mice showing different levels of metabolic alterations reveals that advanced T2D did not affect the number of cells per gram of tissue. Rather, a higher proportion of inflammatory CD36+ cells was identified in HFD fed mice. Despite a marked decreased expression of adipogenic genes (aP2, C/EBPα and PPARγ2), ASC from HFD groups had a higher adipogenic potential and a lower endothelial differentiation potential in vitro compared to control. ASC from the VD group had enhanced cyclin B1 expression and had more adipogenic potential compared to AD group. Conclusion: Our results demonstrate that the metabolic modifications, linked to the nature of fatty acids in diets, modulate the differentiation potential of ASC with increased adipogenesis to the detriment of the endothelial pathway. Results highlight the importance of evaluating the ASC differentiation behavior in a context of autologous cell-based therapy for the repair of vascular tissues in diabetic patients.
文摘This review comprehensively explores the versatile potential of mesenchymal stem cells(MSCs)with a specific focus on adipose-derived MSCs.Ophthalmic and oculoplastic surgery,encompassing diverse procedures for ocular and periocular enhancement,demands advanced solutions for tissue restoration,functional and aesthetic refinement,and aging.Investigating immunomodulatory,regenerative,and healing capacities of MSCs,this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside,addressing common unmet needs in the field of reconstructive and regenerative surgery.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT to Y.B.K.,No.2017R1A2A2A05069417
文摘BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints.
基金Supported by the National Key Research and Development Program of China,No.2023YFC2508806Key Research and Development Project in Henan Province,No.231111310500+4 种基金Young Elite Scientists Sponsorship Program by CAST,No.2021-QNRC2-A06Scientific Research Project of Henan Zhongyuan Medical Science and Technology Innovation and Development Foundation,No.ZYYC2023ZDYouth Science Award Project of the Provincial-Level Joint Fund for Science and Technology Research and Development Project in Henan Province,No.225200810084Special Project on Training Top Talents in Traditional Chinese Medicine in Henan Province,No.2022ZYBJ242023 Hunan University of Chinese Medicine Postgraduate Innovation Project,No.2023CX64。
文摘The repair of bone tissue damage is a complex process that is well-orchestrated in time and space,a focus and difficulty in orthopedic treatment.In recent years,the success of mesenchymal stem cells(MSCs)-mediated bone repair in clinical trials of large-area bone defects and bone necrosis has made it a candidate in bone tissue repair engineering and regenerative medicine.MSCs are closely related to macrophages.On one hand,MSCs regulate the immune regulatory function by influencing macrophages proliferation,infiltration,and phenotype polarization,while also affecting the osteoclasts differentiation of macrophages.On the other hand,macrophages activate MSCs and mediate the multilineage differentiation of MSCs by regulating the immune microenvironment.The cross-talk between MSCs and macrophages plays a crucial role in regulating the immune system and in promoting tissue regeneration.Making full use of the relationship between MSCs and macrophages will enhance the efficacy of MSCs therapy in bone tissue repair,and will also provide a reference for further application of MSCs in other diseases.
文摘Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation from the stromal vascular fraction (SVF) of subcutaneous adipose tissue. Intraoperatory SVF/ASC enrichment has been proposed to stabilize and optimalize autologous fat engraftment for breast reconstructive surgery after mastectomy, but the safety of these procedures is still uncertain. Although the literature offers contrasting opinions concerning the effects of ASCs on cancer growth according to the tumor type, at the present time ASC implementation for regenerative medicine therapies should be carefully considered in patients previously treated for breast cancer. At the present, reconstructive therapy utilizing ASC-enriched fat grafting should be postponed until there is no evidence of active disease.
文摘Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation,which are continuously regulated by signals from the extracellular matrix(ECM)microenvironment.Therefore,the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior.Although the acellular ECM of specific tissues and organs(such as the skin,heart,cartilage,and lung)can mimic the natural microenvironment required for stem cell differentiation,the lack of donor sources restricts their development.With the rapid development of adipose tissue engineering,decellularized adipose matrix(DAM)has attracted much attention due to its wide range of sources and good regeneration capacity.Protocols for DAM preparation involve various physical,chemical,and biological methods.Different combinations of these methods may have different impacts on the structure and composition of DAM,which in turn interfere with the growth and differentiation of stem cells.This is a narrative review about DAM.We summarize the methods for decellularizing and sterilizing adipose tissue,and the impact of these methods on the biological and physical properties of DAM.In addition,we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration(such as adipose tissue),repair(such as wounds,cartilage,bone,and nerves),in vitro bionic systems,clinical trials,and other disease research.
基金Supported by Chang Gung Memorial Hospital,Linkou,Taiwan,No.CORPG3K0021 and No.CORPG3K0191.
文摘Dental stem cells can differentiate into different types of cells.Dental pulp stem cells,stem cells from human exfoliated deciduous teeth,periodontal ligament stem cells,stem cells from apical papilla,and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development.The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering.In recent years,three-dimensional(3D)tissue scaffolds have been used to reconstruct and restore different anatomical defects.With rapid advances in 3D tissue engineering,dental stem cells have been used in the regeneration of 3D engineered tissue.This review presents an overview of different types of dental stem cells used in 3D tissue regeneration,which are currently the most common type of stem cells used to treat human tissue conditions.
基金Supported by Russian Science Foundation,No.23-74-10027.
文摘Bibliographic analysis is still very rarely used in experimental basic study papers.The comprehensive bibliometric analysis of scientific literature on research progress and challenges in stem cell therapy for diabetic chronic wounds,which was conducted in the work of Shi et al can be a case study and a source of valuable information for writing reviews and experimental papers in this field.Basic experimental studies on a role of mesenchymal stem cells(MSCs)in wound healing that are published in 2023-2024,such as Zhang et al in 2023,Hu et al in 2023,Wang et al in 2023 are certainly also subjects for applying this powerful tool to analyze current research,challenges and perspectives in this field.This is due to the fact that these studies have addressed a great variety of aspects of the application of MSCs for the treatment of chronic wounds,such as using both the cells themselves and their various products:Sponges,hydrogels,exosomes,and genetic constructions.Such a wide variety of directions in the field of study and biomedical application of MSCs requires a deep understanding of the current state of research in this area,which can be provided by bibliometric analysis.Thus,the use of such elements of bibliographic analysis as publication count by year and analysis of top-10 keywords calculated independently or cited from bibliometric analysis studies can be safely recommended for every basic study manuscripts,primarily for the“Introduction”section,and review.
基金CAMS Innovation Fund for Medical Sciences,No.2022-I2M-C&T-B-034.
文摘Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.
文摘BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
文摘The aim of the present review is to highlight the possible neuroregenerative potential ol adipose-derived stem cells. The key property of stem cells is plasticity including self-renewal, multilineage differentiation, and migration, whereas the required property is transplantability. For a long time, embryonic stem cells were thought to be the only source of pluripotency, a dogma that has been challenged during the last decade. Today, an alternative option might be adipose-derived stem cells, as easily accessible, ethical and autologous cellular source. Recent knowledge of adipobiology increasingly recognizes that adipose tissue is the major endo- and paracrine organ of the human body. Likewise, numerous neuropetides, neurotrophic factors, neurotransmitters, hypothalamic and steroid hormones and their receptors are shared by adipose tissue and brain. Accordingly, the regenerative potential of neuroprotective factor-secreting adipose-derived stem cells is outlined. Whether the possible benefits of adipose stem cell-based therapy may be mediated via cell transdifferentiation and/or paracrine mechanisms remains to further be evaluated.
文摘Tissue inhibitor of m etalloprotease-1(TIM P-1)is a tissue inhibitor o f matrix metalloproteinases(MMPs).It however exerts multiple effects on biological processes,such as cell growth,proliferation,differentiation and apoptosis,in an MMP-independent manner.This study aimed to examine the role of TIMP-1 in adipogenesis of adipose-derived stem cells(ASCs)and the underlying mechanism.We knocked down the TIMP-1 gene in ASCs through lentiviral vectors encoding TIMP-1 small interfering RNA(siRNA),and then found that the knockdown of TIMP-1 in ASCs promoted the adipogenic differentiation of stem cells and inhibited the Wnt/β-catenin signaling pathway in ASCs.We also noted that mutant TIMP-1 without the inhibitory activity on MMPs promoted the activation of Wnt/β-catenin pathway as well as the recombinant wild type TIMP-1 did,which indicated that the effect of TIMP-1 on Wnt/β-catenin pathway was MMPindependent.Our study suggested that TIMP-1 negatively regulated the adipogenesis of ASCs via the Wnt/β-catenin signaling pathway in an MMP-independent manner.