期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest
1
作者 Yi Lin Tian Wei +7 位作者 Bin Yang Yuri Knyazikhin Yuhu Zhang Hisashi Sato Xing Fang Xinlian Liang Lei Yan Shanlin Sun 《International Journal of Digital Earth》 SCIE EI 2017年第7期701-718,共18页
In forest ecosystem studies,tree stem structure variables(SSVs)proved to be an essential kind of parameters,and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing ... In forest ecosystem studies,tree stem structure variables(SSVs)proved to be an essential kind of parameters,and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle.For this newly emerging task,satellite imagery such as WorldView-2 panchromatic images(WPIs)is used as a potential solution for co-prediction of tree-level multifarious SSVs,with static terrestrial laser scanning(TLS)assumed as a‘bridge’.The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters,and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models(termed as Model1s and Model2s).In the case of Picea abies,Pinus sylvestris,Populus tremul and Quercus robur in a boreal forest,tests showed that Model1s and Model2s for different tree species can be derived(e.g.the maximum R^(2)=0.574 for Q.robur).Overall,this study basically validated the algorithm proposed for co-prediction of multifarious SSVs,and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling,which is useful for large-scale investigations of forest understory,macroecosystem ecology,global vegetation dynamics and global carbon cycle. 展开更多
关键词 Tree stem structure variable(SSV) WorldView-2 panchromatic image(WPI) static terrestrial laser scanning(TLS) allometric relationship co-prediction model
原文传递
Can Stand Density and Stem Stratification Be Indicators of Aboveground Biomass in Woody Plant Recruitment in Savannah 被引量:1
2
作者 Saran Traoré Sébastien Ange Habih Nombré +2 位作者 Issiaka Keïta Hassan Bismarck Nacro Brice Sinsin 《Open Journal of Forestry》 2022年第1期41-59,共19页
Stem density and size stratification of woody species are informative of vegetation conditions and its physiognomy in savannah whereas their variation influence woody population functioning. Current study endeavoured ... Stem density and size stratification of woody species are informative of vegetation conditions and its physiognomy in savannah whereas their variation influence woody population functioning. Current study endeavoured to evaluate the stand density and size variability of woody species related to aboveground biomass in a Sudanian savannah. Total height, stem diameter at breast height (dbh) ≥ 5 cm were measured in 30 plots of 50 m </span></span><span><span><span style="font-family:"">×<span> 20 m laid in respect to vegetation type as bowal, shrubland and woodland. Species diversity, stem density, height and basal area were calculated and compared across sites and variation in stem dbh classes evaluated. Total aboveground biomass was estimated and thereafter linear relationships were established between stand density and aboveground biomass</span></span></span></span><span><span><span style="font-family:"">,</span></span></span><span><span><span style="font-family:""> and basal area. Results revealed three different sites with an overall 58 species identified through vegetation type including liana species (4 stems in bowal) with 18 genera and 42 families. Fabaceae Combretaceae, Anacardiaceae and Rubiaceae were dominant families. Small sized trees represented 72% of total stem density considered in structure with significant higher basal area, while large sized trees as 28% were scarcely distributed. More than 70% variation in biomass w</span></span></span><span><span><span style="font-family:"">as </span></span></span><span><span><span style="font-family:"">due to stem density and basal area with a dominance of small trees. In conclusion increase size in tree community indicated increase in accumulated aboveground biomass as positive regeneration features. But, change in vegetation structure strongly influence negatively species ability to grow from lower to upper size class and later on, disrupt ecosystem functioning. Plant stem density and stratification could be considered as indicators of aboveground biomass fluctuating in regeneration monitoring. 展开更多
关键词 Aboveground Biomass Biodiversity Conservation Plant Regeneration stem structure Vegetation Type
下载PDF
Effect of Different Nitrogen Application Rate on Rice Stem Characteristics
3
作者 Wenbin XIONG Fengying XU Xiaoling WANG 《Agricultural Biotechnology》 CAS 2018年第5期204-207,共4页
The effects of different nitrogen application rate on the physical characteristics and anatomic structure of rice stems were investigated with rice cultivars Guangliangyou 1128 (with high resistance) and Zhunliangyo... The effects of different nitrogen application rate on the physical characteristics and anatomic structure of rice stems were investigated with rice cultivars Guangliangyou 1128 (with high resistance) and Zhunliangyou 527 (with low resistance) as materials. The results showed that, firstly, plant height, gravity center height and basal internode length of the 2 rice cultivars increased with the increase of nitrogen application rate, while wall thickness and internode filling degree decreased. The breaking-resistance strength per stem and thrust-resistance strength of plants declined with the increase of nitrogen application rate. Secondly, as nitrogen input increased, the number of vascular bundles and the area of vascular bundles increased between the 2 rice cultivars. Thirdly, with the increase of nitrogen application rate, the stem section area of Guangliangyou 1128, which had strong lodging resistance, gradually increased, while that of Zhunliangyou 527 increased firstly and then decreased. The maximum application amount of nitrogen was 240 kg/hm 2. Nitrogen fertilizer mainly affected the relative gravity center height, stem wall thickness and internode filling degree of the 2 cultivars, thereby reducing the basal stem breaking resistance and plant thrust-resistance strength. 展开更多
关键词 Nitrogen application rate Thrust-resistance strength of plants stem physical characteristics stem anatomic structure
下载PDF
Imaging the structure and organization of mouse cerebellum and brain stem with second harmonic generation microscopy
4
作者 Xiuli Liu Daozhu Hua +1 位作者 Ling Fu Shaoqun Zeng 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期7-11,共5页
To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we... To visualize the structure and organization of the brain is a fundamental requirement in the research of neuroscience. Here, combining with two-photon excitation fluorescence microscopy and transgenetic mouse GAD67,we demonstrate a custom-built second harmonic generation(SHG) microscope to discriminate brain layers and sub regions in the cerebellum and brain stem slices with cellular resolution. In particular, the cell densities of neurons in different brain layers are extracted due to the cell soma appearing as dark shadow on an SHG image.Further, the axon initial segments of the Purkinje cell are easily recognized without labeling, which would be useful for guiding micropipettes for electrophysiology. 展开更多
关键词 SHG Imaging the structure and organization of mouse cerebellum and brain stem with second harmonic generation microscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部