Stem cell regeneration is an essential biological process in the maintenance of tissue homeostasis;dysregulation of stem cell regeneration may result in dynamic diseases that show oscillations in cell numbers.Cell het...Stem cell regeneration is an essential biological process in the maintenance of tissue homeostasis;dysregulation of stem cell regeneration may result in dynamic diseases that show oscillations in cell numbers.Cell heterogeneity and plasticity are necessary for the dynamic equilibrium of tissue homeostasis;however,how these features may affect the oscillatory dynamics of the stem cell regeneration process remains poorly understood.Here,based on a mathematical model of heterogeneous stem cell regeneration that includes cell heterogeneity and random transition of epigenetic states,we study the conditions to have oscillation solutions through bifurcation analysis and numerical simulations.Our results show various model system dynamics with changes in different parameters associated with kinetic rates,cellular heterogeneity,and plasticity.We show that introducing heterogeneity and plasticity to cells can result in oscillation dynamics,as we have seen in the homogeneous stem cell regeneration system.However,increasing the cell heterogeneity and plasticity intends to maintain tissue homeostasis under certain conditions.The current study is an initiatory investigation of how cell heterogeneity and plasticity may affect stem cell regeneration dynamics,and many questions remain to be further studied both biologically and mathematically.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases.Diabetes mellitus(DM)is a frequently diagnosed chronic diseas...BACKGROUND Mesenchymal stem cells(MSCs)are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases.Diabetes mellitus(DM)is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run.DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues.MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model.AIM To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs.METHODS Human adipose tissue-derived MSCs(hAD-MSCs)were seeded in low(5.6 mmol/L of glucose)and high glucose(25 mmol/L of glucose)for 7 d.Cytotoxicity,viability,mitochondrial dynamics,and apoptosis were deplored using specific kits.Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase(PI3K),TSC1,and mammalian target of rapamycin(mTOR)in these cells.RESULTS hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability,as shown by a significant increase in lactate dehydrogenase(P<0.01)and a significant decrease in Trypan blue(P<0.05)in these cells compared to low glucose control.Mitochondrial membrane potential,indicated by tetramethylrhodamine ethyl ester(TMRE)fluorescence intensity,and nicotinamide adenine dinucleotide(NAD+)/NADH ratio were significantly dropped(P<0.05 for TMRE and P<0.01 for NAD+/NADH)in high glucose exposed hAD-MSCs,indicating disturbed mitochondrial function.PI3K protein expression significantly decreased in high glucose culture MSCs(P<0.05 compared to low glucose)and it was coupled with significant upregulation in TSC1(P<0.05)and downregulation in mTOR protein expression(P<0.05).Mitochondrial complexes I,IV,and V were downregulated profoundly in high glucose(P<0.05 compared to low glucose).Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose.CONCLUSION High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment.展开更多
A new method was proposed to study the dynamics of stem form of matural Korean pine (Pinus koraiensis) trec. In natural Korean Pine forest, the occurring time of maximum height and diameter is very difference. This pa...A new method was proposed to study the dynamics of stem form of matural Korean pine (Pinus koraiensis) trec. In natural Korean Pine forest, the occurring time of maximum height and diameter is very difference. This paper connected stem form to stage of tree growth to analysis the form dynamic of Korean pine. The monomolecular equation was chosen as the stem model. The result shows that the maximum growth year of natural Korean pine is earlier than diameter.展开更多
Stem cells possess the ability to divide symmetrically or asymmet- rically to allow for maintenance of the stem cell pool or become committed progenitors and differentiate into various cell lineages. The unique self-r...Stem cells possess the ability to divide symmetrically or asymmet- rically to allow for maintenance of the stem cell pool or become committed progenitors and differentiate into various cell lineages. The unique self-renewal capabilities and pluripotency of stem cells are integral to tissue regeneration and repair (Oh et al., 2014). Mul- tiple mechanisms including intracellular programs and extrinsic cues are reported to regulate neural stem cell (NSC) fate (Bond et al., 2015). A recent study, published in Cell Stern Cell, identified a novel mechanism whereby mitochondrial dynamics drive NSC fate (Khacho et al., 2016).展开更多
Impaired axonal development and degeneration underlie debilitating neurodegenerative diseases including hereditary spastic paraplegia, a large group of inherited diseases. Hereditary spastic paraplegia is caused by re...Impaired axonal development and degeneration underlie debilitating neurodegenerative diseases including hereditary spastic paraplegia, a large group of inherited diseases. Hereditary spastic paraplegia is caused by retrograde degeneration of the long corticospinal tract axons, leading to progressive spasticity and weakness of leg and hip muscles. There are over 70 subtypes with various underlying pathophysiological processes, such as defective vesicular trafficking, lipid metabolism, organelle shaping, axonal transport, and mitochondrial dysfunction. Although hereditary spastic paraplegia consists of various subtypes with different pathological characteristics, defects in mitochondrial morphology and function emerge as one of the common cellular themes in hereditary spastic paraplegia. Mitochondrial morphology and function are remodeled by mitochondrial dynamics regulated by several key fission and fusion mediators. However, the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia remains largely unknown. Recently, studies reported perturbed mitochondrial morphology in hereditary spastic paraplegia neurons. Moreover, downregulation of mitochondrial fission regulator dynamin-related protein 1, both pharmacologically and genetically, could rescue axonal outgrowth defects in hereditary spastic paraplegia neurons, providing a potential therapeutic target for treating these hereditary spastic paraplegia. This mini-review will describe the regulation of mitochondrial fission/fusion, the link between mitochondrial dynamics and axonal defects, and the recent progress on the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia.展开更多
It was hypothesized that mesenchymal stem cells(MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs w...It was hypothesized that mesenchymal stem cells(MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance■ Nerve Grafts or Neura Gen■ Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance■ Nerve Grafts and 30 Neura Gen■ Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor(NGF), glial cell line-derived neurotrophic factor(GDNF), pleiotrophin(PTN), growth associated protein 43(GAP43) and brain-derived neurotrophic factor(BDNF)], myelination [peripheral myelin protein 22(PMP22) and myelin protein zero(MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1(PECAM1/CD31) and vascular endothelial cell growth factor alpha(VEGFA)], extracellular matrix(ECM) [collagen type alpha I(COL1A1), collagen type alpha III(COL3A1), Fibulin 1(FBLN1) and laminin subunit beta 2(LAMB2)] and cell surface marker cluster of differentiation 96(CD96) gene expression was quantified. Unseeded Avance■ Nerve Grafts and Neura Gen■ Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance■ Nerve Grafts led to a short-term upregulation of neurotrophic(NGF, GDNF and BDNF), myelination(PMP22 and MPZ) and angiogenic genes(CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the Neura Gen■ Nerve Guide led to short term upregulation of neurotrophic(NGF, GDNF and BDNF) myelination(PMP22 and MPZ), angiogenic(CD31 and VEGFA), ECM(COL1A1) and cell surface(CD96) genes and long-term upregulation of neurotrophic(GDNF and BDNF), angiogenic(CD31 and VEGFA), ECM genes(COL1A1, COL3A1, and FBLN1) and cell surface(CD96) genes. Analysis demonstrated MSCs seeded onto Neura Gen■ Nerve Guides expressed significantly higher levels of neurotrophic(PTN), angiogenic(VEGFA) and ECM(COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance■ Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the Neura Gen■ Nerve Guide was more pronounced, particularly in the long term period(> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.展开更多
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ...In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells.展开更多
Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydro...Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.展开更多
[Objective] The research aimed to study the adsorption characteristics of the Helianthus tuberosus stems to methylene blue in water. [Method] The optimum condition, adsorption thermodynamic and kinetic characteristics...[Objective] The research aimed to study the adsorption characteristics of the Helianthus tuberosus stems to methylene blue in water. [Method] The optimum condition, adsorption thermodynamic and kinetic characteristics were studied on the methylene blue adsorbed by Helianthus tuberosus stems. [ Result] The equilibrium process was described well by the Langmuir isotherm model. The thermodynamics parameters were enthalpy changes (△H) of -12.147 kJ/mol, Gibb'S free energy changes (△G) of -25.75 k J/reel, and entropy changes (△S) of 47.21 J/(mol · K), respectively, at 288 K, indicating that the adsorption thermodynamic of methylene blue adsorbed by helianthus tuberoses stems was a spontaneous and exothermic process. The kinetics of the interactions showed better agreement with the Lagergren second order kinetics. The apparent activation energy (Ea) of adsorption process was 271.7 kJ/mol. [ Conclusion] This study provided the theoretical basis for the development and utilization of low-cost agricultural wastes to remove the hazardous substances in industrial wastewater.展开更多
Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be stra...Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.展开更多
AIM: To investigate collagen patches seeded with mesenchymal stem cells(MSCs) and/or tenocytes(TCs) with regards to their suitability for anterior cruciate ligament(ACL) repair. METHODS: Dynamic intraligamentary stabi...AIM: To investigate collagen patches seeded with mesenchymal stem cells(MSCs) and/or tenocytes(TCs) with regards to their suitability for anterior cruciate ligament(ACL) repair. METHODS: Dynamic intraligamentary stabilization utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide?(CG) and Novocart?(NC). Cells were seeded onto the scaffolds and cultured for 7 d either as a pure populations or as "premix" containing a 1:1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts(0.4 μm). We analyzed the patches by real time polymerase chain reaction, glycosaminoglycan(GAG), DNA and hydroxyproline(HYP) content. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e., confocal laser scanning microscopy(c LSM) and scanning electron microscopy(SEM), were applied.RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and c LSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitativepolymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 d.CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.展开更多
基金funded by the Scientific Research Project of Tianjin Education Commission(Grant No.2019KJ026).
文摘Stem cell regeneration is an essential biological process in the maintenance of tissue homeostasis;dysregulation of stem cell regeneration may result in dynamic diseases that show oscillations in cell numbers.Cell heterogeneity and plasticity are necessary for the dynamic equilibrium of tissue homeostasis;however,how these features may affect the oscillatory dynamics of the stem cell regeneration process remains poorly understood.Here,based on a mathematical model of heterogeneous stem cell regeneration that includes cell heterogeneity and random transition of epigenetic states,we study the conditions to have oscillation solutions through bifurcation analysis and numerical simulations.Our results show various model system dynamics with changes in different parameters associated with kinetic rates,cellular heterogeneity,and plasticity.We show that introducing heterogeneity and plasticity to cells can result in oscillation dynamics,as we have seen in the homogeneous stem cell regeneration system.However,increasing the cell heterogeneity and plasticity intends to maintain tissue homeostasis under certain conditions.The current study is an initiatory investigation of how cell heterogeneity and plasticity may affect stem cell regeneration dynamics,and many questions remain to be further studied both biologically and mathematically.
文摘BACKGROUND Mesenchymal stem cells(MSCs)are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases.Diabetes mellitus(DM)is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run.DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues.MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model.AIM To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs.METHODS Human adipose tissue-derived MSCs(hAD-MSCs)were seeded in low(5.6 mmol/L of glucose)and high glucose(25 mmol/L of glucose)for 7 d.Cytotoxicity,viability,mitochondrial dynamics,and apoptosis were deplored using specific kits.Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase(PI3K),TSC1,and mammalian target of rapamycin(mTOR)in these cells.RESULTS hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability,as shown by a significant increase in lactate dehydrogenase(P<0.01)and a significant decrease in Trypan blue(P<0.05)in these cells compared to low glucose control.Mitochondrial membrane potential,indicated by tetramethylrhodamine ethyl ester(TMRE)fluorescence intensity,and nicotinamide adenine dinucleotide(NAD+)/NADH ratio were significantly dropped(P<0.05 for TMRE and P<0.01 for NAD+/NADH)in high glucose exposed hAD-MSCs,indicating disturbed mitochondrial function.PI3K protein expression significantly decreased in high glucose culture MSCs(P<0.05 compared to low glucose)and it was coupled with significant upregulation in TSC1(P<0.05)and downregulation in mTOR protein expression(P<0.05).Mitochondrial complexes I,IV,and V were downregulated profoundly in high glucose(P<0.05 compared to low glucose).Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose.CONCLUSION High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment.
文摘A new method was proposed to study the dynamics of stem form of matural Korean pine (Pinus koraiensis) trec. In natural Korean Pine forest, the occurring time of maximum height and diameter is very difference. This paper connected stem form to stage of tree growth to analysis the form dynamic of Korean pine. The monomolecular equation was chosen as the stem model. The result shows that the maximum growth year of natural Korean pine is earlier than diameter.
基金AJ-A is a Fonds de recherche du Québec-Santé(FRQS)scholarsupported by a grant from Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2016-06605)
文摘Stem cells possess the ability to divide symmetrically or asymmet- rically to allow for maintenance of the stem cell pool or become committed progenitors and differentiate into various cell lineages. The unique self-renewal capabilities and pluripotency of stem cells are integral to tissue regeneration and repair (Oh et al., 2014). Mul- tiple mechanisms including intracellular programs and extrinsic cues are reported to regulate neural stem cell (NSC) fate (Bond et al., 2015). A recent study, published in Cell Stern Cell, identified a novel mechanism whereby mitochondrial dynamics drive NSC fate (Khacho et al., 2016).
文摘Impaired axonal development and degeneration underlie debilitating neurodegenerative diseases including hereditary spastic paraplegia, a large group of inherited diseases. Hereditary spastic paraplegia is caused by retrograde degeneration of the long corticospinal tract axons, leading to progressive spasticity and weakness of leg and hip muscles. There are over 70 subtypes with various underlying pathophysiological processes, such as defective vesicular trafficking, lipid metabolism, organelle shaping, axonal transport, and mitochondrial dysfunction. Although hereditary spastic paraplegia consists of various subtypes with different pathological characteristics, defects in mitochondrial morphology and function emerge as one of the common cellular themes in hereditary spastic paraplegia. Mitochondrial morphology and function are remodeled by mitochondrial dynamics regulated by several key fission and fusion mediators. However, the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia remains largely unknown. Recently, studies reported perturbed mitochondrial morphology in hereditary spastic paraplegia neurons. Moreover, downregulation of mitochondrial fission regulator dynamin-related protein 1, both pharmacologically and genetically, could rescue axonal outgrowth defects in hereditary spastic paraplegia neurons, providing a potential therapeutic target for treating these hereditary spastic paraplegia. This mini-review will describe the regulation of mitochondrial fission/fusion, the link between mitochondrial dynamics and axonal defects, and the recent progress on the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia.
基金supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health (No. R01NS102360)。
文摘It was hypothesized that mesenchymal stem cells(MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance■ Nerve Grafts or Neura Gen■ Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance■ Nerve Grafts and 30 Neura Gen■ Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor(NGF), glial cell line-derived neurotrophic factor(GDNF), pleiotrophin(PTN), growth associated protein 43(GAP43) and brain-derived neurotrophic factor(BDNF)], myelination [peripheral myelin protein 22(PMP22) and myelin protein zero(MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1(PECAM1/CD31) and vascular endothelial cell growth factor alpha(VEGFA)], extracellular matrix(ECM) [collagen type alpha I(COL1A1), collagen type alpha III(COL3A1), Fibulin 1(FBLN1) and laminin subunit beta 2(LAMB2)] and cell surface marker cluster of differentiation 96(CD96) gene expression was quantified. Unseeded Avance■ Nerve Grafts and Neura Gen■ Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance■ Nerve Grafts led to a short-term upregulation of neurotrophic(NGF, GDNF and BDNF), myelination(PMP22 and MPZ) and angiogenic genes(CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the Neura Gen■ Nerve Guide led to short term upregulation of neurotrophic(NGF, GDNF and BDNF) myelination(PMP22 and MPZ), angiogenic(CD31 and VEGFA), ECM(COL1A1) and cell surface(CD96) genes and long-term upregulation of neurotrophic(GDNF and BDNF), angiogenic(CD31 and VEGFA), ECM genes(COL1A1, COL3A1, and FBLN1) and cell surface(CD96) genes. Analysis demonstrated MSCs seeded onto Neura Gen■ Nerve Guides expressed significantly higher levels of neurotrophic(PTN), angiogenic(VEGFA) and ECM(COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance■ Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the Neura Gen■ Nerve Guide was more pronounced, particularly in the long term period(> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.
基金supported by the National Natural Science Foundation of China,No.81070614the Key Project of the Natural Science Foundation of Hubei Province of China,No.2008CDA044the Natural Science Foundation of Hubei University of Medicine,No.2011QDZR-2
文摘In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells.
基金supported by the National Natural Science Foundation of China,No.31071222Jilin Province Science and Technology Development Project in China,No.20080738the Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University in China,No.2013106023
文摘Tissue engineering technologies offer new treatment strategies for the repair of peripheral nerve injury, hut cell loss between seeding and adhesion to the scaffold remains inevitable. A thermosensitive collagen hydrogel was used as an extracellular matrix in this study and combined with bone marrow mesenchymal stem cells to construct tissue-engineered peripheral nerve composites in vitro. Dynamic culture was performed at an oscillating frequency of 0.5 Hz and 35° swing angle above and below the horizontal plane. The results demonstrated that bone marrow mesenchymal stem cells formed membrane-like structures around the poly-L-lactic acid scaffolds and exhibited regular alignment on the composite surface. Collagen was used to fill in the pores, and seeded cells adhered onto the poly-L-lactic acid fibers. The DNA content of the bone marrow mesenchymal stem cells was higher in the composites constructed with a thermosensitive collagen hydrogel compared with that in collagen I scaffold controls. The cellular DNA content was also higher in the thermosensitive collagen hydrogel composites constructed with the thermosensitive collagen hydrogel in dynamic culture than that in static culture. These results indicate that tissue-engineered composites formed with thermosensitive collagen hydrogel in dynamic culture can maintain larger numbers of seeded cells by avoiding cell loss during the initial adhe-sion stage. Moreover, seeded cells were distributed throughout the material.
基金Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates(201210719011)the Key Program of Natural Science Foundation of Yan'an University(YDZ2012-09)
文摘[Objective] The research aimed to study the adsorption characteristics of the Helianthus tuberosus stems to methylene blue in water. [Method] The optimum condition, adsorption thermodynamic and kinetic characteristics were studied on the methylene blue adsorbed by Helianthus tuberosus stems. [ Result] The equilibrium process was described well by the Langmuir isotherm model. The thermodynamics parameters were enthalpy changes (△H) of -12.147 kJ/mol, Gibb'S free energy changes (△G) of -25.75 k J/reel, and entropy changes (△S) of 47.21 J/(mol · K), respectively, at 288 K, indicating that the adsorption thermodynamic of methylene blue adsorbed by helianthus tuberoses stems was a spontaneous and exothermic process. The kinetics of the interactions showed better agreement with the Lagergren second order kinetics. The apparent activation energy (Ea) of adsorption process was 271.7 kJ/mol. [ Conclusion] This study provided the theoretical basis for the development and utilization of low-cost agricultural wastes to remove the hazardous substances in industrial wastewater.
文摘Tumor growth from a single transformed cancer cell up to a clinically apparent mass spans many spatial and temporal orders of magnitude. Implementation of cellular automata simulations of such tumor growth can be straightforward but computing performance often counterbalances simplicity. Computationally convenient simulation times can be achieved by choosing appropriate data structures, memory and cell handling as well as domain setup. We propose a cellular automaton model of tumor growth with a domain that expands dynamically as the tumor population increases. We discuss memory access, data structures and implementation techniques that yield high-performance multi-scale Monte Carlo simulations of tumor growth. We discuss tumor properties that favor the proposed high-performance design and present simulation results of the tumor growth model. We estimate to which parameters the model is the most sensitive, and show that tumor volume depends on a number of parameters in a non-monotonic manner.
基金Supported by A grant of the Swiss Orthopaedics Society(SGOT)to Ahmad SS,No.S99083814080618560
文摘AIM: To investigate collagen patches seeded with mesenchymal stem cells(MSCs) and/or tenocytes(TCs) with regards to their suitability for anterior cruciate ligament(ACL) repair. METHODS: Dynamic intraligamentary stabilization utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide?(CG) and Novocart?(NC). Cells were seeded onto the scaffolds and cultured for 7 d either as a pure populations or as "premix" containing a 1:1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts(0.4 μm). We analyzed the patches by real time polymerase chain reaction, glycosaminoglycan(GAG), DNA and hydroxyproline(HYP) content. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e., confocal laser scanning microscopy(c LSM) and scanning electron microscopy(SEM), were applied.RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and c LSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitativepolymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 d.CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.