Improved Weighted Essentially Non-oscillatory Scheme is a high order finite volume method. The mixed stencils can be obtained by a combination of r + 1 order and r order stencils. We improve the weights by the mapping...Improved Weighted Essentially Non-oscillatory Scheme is a high order finite volume method. The mixed stencils can be obtained by a combination of r + 1 order and r order stencils. We improve the weights by the mapping method. The restriction that conventional ENO or WENO schemes only use r order stencils, is removed. Higher resolution can be achieved by introducing the r + 1 order stencils. This method is verified by three cases, i.e. the interaction of a moving shock with a density wave problem, the interacting blast wave problem and the double mach reflection problem. The numerical results show that the Improved Weighted Essential Non-oscillatory method is a stable, accurate high-resolution finite volume scheme.展开更多
In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbol...In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.展开更多
We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order ...We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.展开更多
针对重叠网格寻点问题,提出了一种直接在格心网格下操作,基于虚网格的ADT(Alternating Digital Tree)搜索方法.通过对计算网格进行扩展,建立虚边界网格,解决了格心网格因覆盖区域不完整而无法直接建立ADT数据结构的问题.搜索结果即为包...针对重叠网格寻点问题,提出了一种直接在格心网格下操作,基于虚网格的ADT(Alternating Digital Tree)搜索方法.通过对计算网格进行扩展,建立虚边界网格,解决了格心网格因覆盖区域不完整而无法直接建立ADT数据结构的问题.搜索结果即为包含解的格心单元集合,可直接对结果列表遍历以得到合理贡献单元,故完全摒弃了可靠性差的StencilWalk方法.由虚网格的定义,使寻点在边界附近的处理更为灵活,可以准确给出边界附近贡献单元的有效信息,同时简化了虚网格体系的构建.扩展了重叠边界类型,构建的搜索空间能完整覆盖网格范围,解决了对称面重叠问题.算例研究表明:该方法可靠性好,边界处理能力强,有效提高了重叠网格方法对大型复杂网格的解算能力.展开更多
A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final...A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.展开更多
The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-...The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.展开更多
A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the cl...A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the classical WENO schemes(Jiang and Shu in J Comput Phys,126:202-228,1996)might suffer from slight post-shock oscillations(which are responsible for the residue to hang at a truncation error level),this new type of high-order finite-difference and finite-volume multi-resolution WENO schemes is applied to control the slight post-shock oscillations and push the residue to settle down to machine zero in steady-state simulations.This new type of multi-resolution WENO schemes uses the same large stencils as that of the same order classical WENO schemes,could obtain fifth-order,seventh-order,and ninth-order in smooth regions,and could gradually degrade to first-order so as to suppress spurious oscillations near strong discontinuities.The linear weights of such new multi-resolution WENO schemes can be any positive numbers on the condition that their sum is one.This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finitedifference and finite-volume WENO schemes for solving steady-state problems.In comparison with the classical fifth-order finite-difference and finite-volume WENO schemes,the residue of these new high-order multi-resolution WENO schemes can converge to a tiny number close to machine zero for some benchmark steady-state problems.展开更多
文摘Improved Weighted Essentially Non-oscillatory Scheme is a high order finite volume method. The mixed stencils can be obtained by a combination of r + 1 order and r order stencils. We improve the weights by the mapping method. The restriction that conventional ENO or WENO schemes only use r order stencils, is removed. Higher resolution can be achieved by introducing the r + 1 order stencils. This method is verified by three cases, i.e. the interaction of a moving shock with a density wave problem, the interacting blast wave problem and the double mach reflection problem. The numerical results show that the Improved Weighted Essential Non-oscillatory method is a stable, accurate high-resolution finite volume scheme.
基金the NSFC grant 11872210 and the Science Challenge Project,No.TZ2016002the NSFC Grant 11926103 when he visited Tianyuan Mathematical Center in Southeast China,Xiamen 361005,Fujian,Chinathe NSFC Grant 12071392 and the Science Challenge Project,No.TZ2016002.
文摘In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.
基金support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETE 2020-Programa Operational Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.UID/FIS/04650/2019support by FEDER-Fundo Europeu de Desenvolvimento Regional,through COMPETI E 2020-Programa Operacional Fatores de Competitividade,and the National Funds through FCT-Fundacao para a Ciencia e a Tecnologia,project no.POCI-01-0145-FEDER-028118
文摘We propose an adaptive stencil construction for high-order accurate finite volume schemes a posteriori stabilized devoted to solve one-dimensional steady-state hyperbolic equations.High accuracy(up to the sixth-order presently)is achieved,thanks to polynomial recon-structions while stability is provided with an a posteriori MOOD method which controls the cell polynomial degree for eliminating non-physical oscillations in the vicinity of dis-continuities.We supplemented this scheme with a stencil construction allowing to reduce even further the numerical dissipation.The stencil is shifted away from troubles(shocks,discontinuities,etc.)leading to less oscillating polynomial reconstructions.Experimented on linear,Burgers',and Euler equations,we demonstrate that the adaptive stencil technique manages to retrieve smooth solutions with optimal order of accuracy but also irregular ones without spurious oscillations.Moreover,we numerically show that the approach allows to reduce the dissipation still maintaining the essentially non-oscillatory behavior.
文摘针对重叠网格寻点问题,提出了一种直接在格心网格下操作,基于虚网格的ADT(Alternating Digital Tree)搜索方法.通过对计算网格进行扩展,建立虚边界网格,解决了格心网格因覆盖区域不完整而无法直接建立ADT数据结构的问题.搜索结果即为包含解的格心单元集合,可直接对结果列表遍历以得到合理贡献单元,故完全摒弃了可靠性差的StencilWalk方法.由虚网格的定义,使寻点在边界附近的处理更为灵活,可以准确给出边界附近贡献单元的有效信息,同时简化了虚网格体系的构建.扩展了重叠边界类型,构建的搜索空间能完整覆盖网格范围,解决了对称面重叠问题.算例研究表明:该方法可靠性好,边界处理能力强,有效提高了重叠网格方法对大型复杂网格的解算能力.
文摘A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.
基金Project supported by the National Key Project, China (Grant No. GJXM92579).
文摘The accuracy of unstructured finite volume methods is greatly influenced by the gradient reconstruction, for which the stencil selection plays a critical role. Compared with the commonly used face-neighbor and vertex-neighbor stencils, the global-direction stencil is independent of the mesh topology, and characteristics of the flow field can be well reflected by this novel stencil. However, for a high-aspect-ratio triangular grid, the grid skewness is evident, which is one of the most important grid-quality measures known to affect the accuracy and stability of finite volume solvers. On this basis and inspired by an approach of using face-area-weighted centroid to reduce the grid skewness, we explore a method by combining the global-direction stencil and face-area-weighted centroid on high-aspect-ratio triangular grids, so as to improve the computational accuracy. Four representative numerical cases are simulated on high-aspect-ratio triangular grids to examine the validity of the improved global-direction stencil. Results illustrate that errors of this improved methods are the lowest among all methods we tested, and in high-mach-number flow, with the increase of cell aspect ratio, the improved global-direction stencil always has a better stability than commonly used face-neighbor and vertex-neighbor stencils. Therefore, the computational accuracy as well as stability is greatly improved, and superiorities of this novel method are verified.
基金supported by the National Natural Science Foundation of China(Grant No.11872210)supported by the National Science Foundation(Grant No.DMS-1719410)
文摘A new type of high-order multi-resolution weighted essentially non-oscillatory(WENO)schemes(Zhu and Shu in J Comput Phys,375:659-683,2018)is applied to solve for steady-state problems on structured meshes.Since the classical WENO schemes(Jiang and Shu in J Comput Phys,126:202-228,1996)might suffer from slight post-shock oscillations(which are responsible for the residue to hang at a truncation error level),this new type of high-order finite-difference and finite-volume multi-resolution WENO schemes is applied to control the slight post-shock oscillations and push the residue to settle down to machine zero in steady-state simulations.This new type of multi-resolution WENO schemes uses the same large stencils as that of the same order classical WENO schemes,could obtain fifth-order,seventh-order,and ninth-order in smooth regions,and could gradually degrade to first-order so as to suppress spurious oscillations near strong discontinuities.The linear weights of such new multi-resolution WENO schemes can be any positive numbers on the condition that their sum is one.This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finitedifference and finite-volume WENO schemes for solving steady-state problems.In comparison with the classical fifth-order finite-difference and finite-volume WENO schemes,the residue of these new high-order multi-resolution WENO schemes can converge to a tiny number close to machine zero for some benchmark steady-state problems.