Bacterial infection plays an important role in the initiation of biliary sludge formation. Bacterial adherence and biofilm formation on the surface of a material have been considered as one of the main factors of sten...Bacterial infection plays an important role in the initiation of biliary sludge formation. Bacterial adherence and biofilm formation on the surface of a material have been considered as one of the main factors of stent re-occlusion in clinic. This work reported preventing bacterial adherence and bacterial biofilm formation on the surface of biliary stent material using chitosan film. The chitosan film was deposited on 316 L stainless steel (SS) plate by electrophoresis method and was characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The ability of inhibiting bacterial adherence was investigated by incubating in human fresh bile adding E. coli and Enterobacter at 37±1 ℃ . Scanning electron microscopy (SEM) and fluorescence staining were used for observing bacterial colonization and biofilm formation. The results show that chitosan film was uniformly deposited on material surface, and the composition of the film did not change through cross-linking, but the crystallinity of chitosan film become well. Comparing to un-modified sample, the E. coli and Enterococcus adhesion amount and colonization on the surface of modified sample were significantly decreased by fluorescence staining and SEM. It is suggested that chitosan could be applied to biliary stent in clinical because of its antimicrobial activities.展开更多
基金Supported by Key Basic Research Project of China (No. 2005CB623904)National Natural Science Foundation of China (No.RGC30831160509)Program for New Century Excellent Talents in University (No.06-0800)
文摘Bacterial infection plays an important role in the initiation of biliary sludge formation. Bacterial adherence and biofilm formation on the surface of a material have been considered as one of the main factors of stent re-occlusion in clinic. This work reported preventing bacterial adherence and bacterial biofilm formation on the surface of biliary stent material using chitosan film. The chitosan film was deposited on 316 L stainless steel (SS) plate by electrophoresis method and was characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The ability of inhibiting bacterial adherence was investigated by incubating in human fresh bile adding E. coli and Enterobacter at 37±1 ℃ . Scanning electron microscopy (SEM) and fluorescence staining were used for observing bacterial colonization and biofilm formation. The results show that chitosan film was uniformly deposited on material surface, and the composition of the film did not change through cross-linking, but the crystallinity of chitosan film become well. Comparing to un-modified sample, the E. coli and Enterococcus adhesion amount and colonization on the surface of modified sample were significantly decreased by fluorescence staining and SEM. It is suggested that chitosan could be applied to biliary stent in clinical because of its antimicrobial activities.