随着污水生物处理技术的进步,很多相关的数学模型被开发出来用以描述污水生物处理工艺的机理,并指导其设计和运行管理。最为著名和应用广泛的当属国际水质协会(IAWQ)推出的活性污泥数学模型系列(Activated Sludge Model 1-3),即...随着污水生物处理技术的进步,很多相关的数学模型被开发出来用以描述污水生物处理工艺的机理,并指导其设计和运行管理。最为著名和应用广泛的当属国际水质协会(IAWQ)推出的活性污泥数学模型系列(Activated Sludge Model 1-3),即ASM模型。通过以反应器动力学为基础,使用活性污泥一号模型(ASM1)对缺氧一好氧生物废水处理工艺建立数学模型并且加以模拟的结果,得出了在不同的工况参数和反应条件(分别是污泥龄,缺氧池与好氧池的体积比,回流和内回流)下各级反应器中污染物质(主要是可溶性有机污染物,氨氮和硝态氮)浓度的变化规律,可以为实际工艺的设计与运行提供参考和依据。展开更多
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, a...Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic(A2 /O). The ASM2 d implemented on the platform of WEST2011 software and the Bio Win activated sludge/anaerobic digestion(AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2 d parameters(the reduction factor for denitrification(η NO3, H), the maximum growth rate of heterotrophs( μ H), the rate constant for stored polyphosphates in PAOs(q pp), and the hydrolysis rate constant(k h)) were adjusted. Whereas three Bio Win parameters(aerobic decay rate(b H), heterotrophic dissolved oxygen(DO) half saturation(K OA), and Y P /acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations(ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen(N-NO3), total nitrogen(TN), and total phosphorus(TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand(COD) to total Kjeldahl nitrogen(TKN) ratio(COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.展开更多
文摘随着污水生物处理技术的进步,很多相关的数学模型被开发出来用以描述污水生物处理工艺的机理,并指导其设计和运行管理。最为著名和应用广泛的当属国际水质协会(IAWQ)推出的活性污泥数学模型系列(Activated Sludge Model 1-3),即ASM模型。通过以反应器动力学为基础,使用活性污泥一号模型(ASM1)对缺氧一好氧生物废水处理工艺建立数学模型并且加以模拟的结果,得出了在不同的工况参数和反应条件(分别是污泥龄,缺氧池与好氧池的体积比,回流和内回流)下各级反应器中污染物质(主要是可溶性有机污染物,氨氮和硝态氮)浓度的变化规律,可以为实际工艺的设计与运行提供参考和依据。
基金Supported by the College of Scientific Innovation Significant Cultivation Fund Financing Projects(No.708047)the Key Special Program for the Pollution Control(No.2012ZX07101-003)+1 种基金the National Natural Science Foundation of China(No.51208173)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal(BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic(A2 /O). The ASM2 d implemented on the platform of WEST2011 software and the Bio Win activated sludge/anaerobic digestion(AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2 d parameters(the reduction factor for denitrification(η NO3, H), the maximum growth rate of heterotrophs( μ H), the rate constant for stored polyphosphates in PAOs(q pp), and the hydrolysis rate constant(k h)) were adjusted. Whereas three Bio Win parameters(aerobic decay rate(b H), heterotrophic dissolved oxygen(DO) half saturation(K OA), and Y P /acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations(ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen(N-NO3), total nitrogen(TN), and total phosphorus(TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand(COD) to total Kjeldahl nitrogen(TKN) ratio(COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.