This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optim...This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system.The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption.It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one.The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution.The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space.The effectiveness of the proposed method is demonstrated through simulation results.展开更多
A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missi...A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.展开更多
The nonuniform sampling method in hologram plane is proposed to reconstruct objects on multi-plane simultaneously. The hologram is nonuniformly sampled by decomposing it into several parts with various sampling rates....The nonuniform sampling method in hologram plane is proposed to reconstruct objects on multi-plane simultaneously. The hologram is nonuniformly sampled by decomposing it into several parts with various sampling rates. The hologram is calculated based on the nonuniform fast Fourier transform (NUFFT) algorithm. In the experiment, we load this nonuniformly sampled hologram on phases-only spatial light modulator (SLM), and by illumination with collimated light objects with different sampling rates are reconstructed at different distant planes simultaneously. Both of the numerically simulation and optical experiments are performed to demonstrate the feasibility of our method. The experiment also shows that our proposed nonuniform sampled hologram for multi-plane objects is calculated by only one step, better than conventional method that needs several steps of calculation proportional to the numbers of object planes.展开更多
文摘This paper presents a novel sequential inverse optimal control(SIOC)method for discrete-time systems,which calculates the unknown weight vectors of the cost function in real time using the input and output of an optimally controlled discrete-time system.The proposed method overcomes the limitations of previous approaches by eliminating the need for the invertible Jacobian assumption.It calculates the possible-solution spaces and their intersections sequentially until the dimension of the intersection space decreases to one.The remaining one-dimensional vector of the possible-solution space’s intersection represents the SIOC solution.The paper presents clear conditions for convergence and addresses the issue of noisy data by clarifying the conditions for the singular values of the matrices that relate to the possible-solution space.The effectiveness of the proposed method is demonstrated through simulation results.
基金Project 2006G1662-00 supported by the Key Science and Technology Project of Heilongjiang Province
文摘A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.
基金supported by the National"973"Program of China(Nos.2013CB328803 and 2013CB328804)the National"863"Program of China (Nos.2012AA03A302 and 2013AA013904)the Aeronautical Science Foundation of China(No.20125169021)
文摘The nonuniform sampling method in hologram plane is proposed to reconstruct objects on multi-plane simultaneously. The hologram is nonuniformly sampled by decomposing it into several parts with various sampling rates. The hologram is calculated based on the nonuniform fast Fourier transform (NUFFT) algorithm. In the experiment, we load this nonuniformly sampled hologram on phases-only spatial light modulator (SLM), and by illumination with collimated light objects with different sampling rates are reconstructed at different distant planes simultaneously. Both of the numerically simulation and optical experiments are performed to demonstrate the feasibility of our method. The experiment also shows that our proposed nonuniform sampled hologram for multi-plane objects is calculated by only one step, better than conventional method that needs several steps of calculation proportional to the numbers of object planes.