To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three speci...To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three specimens with different cross section shape and different heat treatment condition. According to the experimental results, using numerical calculation software program and the numerical simulation with finite element analysis (FEA), the relationships among the maximal load and displacement on cross section shape with each step bend loading, the loading stroke with the heat treatment condition, and the loading stroke with cross section shape were gained, and also those curves were discussed qualitatively. Finally, the contrast results between the numerical simulation and experiment were carried out to study the influence about the multi-step loading on specimen. It is put forward that enlightenment for the straightening stroke in the precision linear guide rail manufacture process.展开更多
基金Funded by the Open Research Foundation of State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (No. DMETKF2009016)the Hubei Province Science Founda-tion (No.2008CDB274)+1 种基金the Wuhan High-Tech Development Project Founda-tion (No.200812121559)the International Collaborative Research Funds of Chonbuk National University, 2008
文摘To analyze the bending properties of GCr15 steel guide rail based on the elastic-plastic theory, the novel bending loading method consisting of multi-step loading and corresponding unloading was applied in three specimens with different cross section shape and different heat treatment condition. According to the experimental results, using numerical calculation software program and the numerical simulation with finite element analysis (FEA), the relationships among the maximal load and displacement on cross section shape with each step bend loading, the loading stroke with the heat treatment condition, and the loading stroke with cross section shape were gained, and also those curves were discussed qualitatively. Finally, the contrast results between the numerical simulation and experiment were carried out to study the influence about the multi-step loading on specimen. It is put forward that enlightenment for the straightening stroke in the precision linear guide rail manufacture process.