TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3A...TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.展开更多
The Yb^(3+)-doped silica glass was prepared by the Si Cl_4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb^(3+)-doped silica glass ...The Yb^(3+)-doped silica glass was prepared by the Si Cl_4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb^(3+)-doped silica glass are studied at room temperature. The integrated absorption cross section,stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×10~4 pm^3,1.39 pm^2 and 0.56 ms,respectively. The Yb^(3+)-doped microstructure fiber(MSF) was also fabricated by using the Yb^(3+)-doped silica glass as fiber core. What's more,the laser properties of the Yb^(3+)-doped MSF are studied.展开更多
文摘TiC/Ni_3Al composites have been prepared using upward infiltration method. The densification was performed by both Ni_3Al melt filling and TiC sintering during the infiltration. The dissolution of TiC in liquid Ni_3Al has been evidenced by finding Ni_3(Al,Ti)C after fast cooling in the TiC/Ni_3Al composites. The dissolution may be responsible for the infiltration and sintering. Compared with downward infiltration, the upward infiltration brought about higher strength and fracture toughness and shorter infiltration time. TiC/20 vol. pct Ni_3Al composite processed by upward infiltration had a flexural strength of 1476 MPa with a statistic Weibull modulus of 20.2 and a fracture toughness of 20.4 MPa . Better mechanical properties may be attributed to melt unidirectional movement in upward infiltration.
基金supported by the National Basic Research Program of China(No.2010CB327604)the National Natural Science Foundation of China(Nos.61205084,61405173 and 61405172)+1 种基金the Natural Science Foundation of Hebei Province(Nos.F2014203194,F2012203114 and F2014203224)the Science and Technology Program of Tangshan(No.15130263a)
文摘The Yb^(3+)-doped silica glass was prepared by the Si Cl_4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb^(3+)-doped silica glass are studied at room temperature. The integrated absorption cross section,stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×10~4 pm^3,1.39 pm^2 and 0.56 ms,respectively. The Yb^(3+)-doped microstructure fiber(MSF) was also fabricated by using the Yb^(3+)-doped silica glass as fiber core. What's more,the laser properties of the Yb^(3+)-doped MSF are studied.