To solve the identification and comprehension problem of crosscutting concerns in existing legacy software system, a framework of aspect-oriented software reveme engineering is proposed. An approach on re-modularizing...To solve the identification and comprehension problem of crosscutting concerns in existing legacy software system, a framework of aspect-oriented software reveme engineering is proposed. An approach on re-modularizing traversal features of legacy system is presented based on various unified modeling language (UML) diagrams. While modeling crosscutting concerns in UML use case diagrams, the non-functional requirements that affect several use case modules can be enveloped into aspect modules with a stereotype mechanism. The recurring message transmission patterns can be re-modularized as aspects in UML sequence diagrams with UML collaborations. Standard UML activity diagram notations are extended and modified by node fusion and addition, which support the graphical composition operation between crosscutting behaviors and primary business roles of concurrent systems. Case study indicates that travernal features of software system can be extracted and re-modularized from various perspectives in aspect-oriented reverse engineering, which improves comprehensibility and maintainability of legacy systems.展开更多
The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant port...The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.展开更多
It is difficult if not impossible to appropriately and effectively select from among the vast pool of existing neural network machine learning predictive models for industrial incorporation or academic research explor...It is difficult if not impossible to appropriately and effectively select from among the vast pool of existing neural network machine learning predictive models for industrial incorporation or academic research exploration and enhancement. When all models outperform all the others under disparate circumstances, none of the models do. Selecting the ideal model becomes a matter of ill-supported opinion ungrounded on the extant real world environment. This paper proposes a novel grouping of the model pool grounded along a non-stationary real world data line into two groups: Permanent Data Learning and Reversible Data Learning. This paper further proposes a novel approach towards qualitatively and quantitatively demonstrating their significant differences based on how they alternatively approach dynamic and raw real world data vs static and prescient data mining biased laboratory data. The results across 2040 separate simulation runs using 15,600 data points in realistically operationally controlled data environments show that the two-group division is effective and significant with clear qualitative, quantitative and theoretical support. Results across the empirical and theoretical spectrum are internally and externally consistent yet demonstrative of why and how this result is non-obvious.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No .60473063)
文摘To solve the identification and comprehension problem of crosscutting concerns in existing legacy software system, a framework of aspect-oriented software reveme engineering is proposed. An approach on re-modularizing traversal features of legacy system is presented based on various unified modeling language (UML) diagrams. While modeling crosscutting concerns in UML use case diagrams, the non-functional requirements that affect several use case modules can be enveloped into aspect modules with a stereotype mechanism. The recurring message transmission patterns can be re-modularized as aspects in UML sequence diagrams with UML collaborations. Standard UML activity diagram notations are extended and modified by node fusion and addition, which support the graphical composition operation between crosscutting behaviors and primary business roles of concurrent systems. Case study indicates that travernal features of software system can be extracted and re-modularized from various perspectives in aspect-oriented reverse engineering, which improves comprehensibility and maintainability of legacy systems.
基金supported by the Beijing Natural Science Foundation(No.2232059)the National Natural Science Foundation of China(Nos.52121003,52374148,52204163 and 51934008)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2023JCCXNY04 and 2023YQTD02)the Open Fund of Key laboratory of Xinjiang Coal Resources Green Mining,Ministry of Education(No.KLXGY-KB2408)。
文摘The sublevel top coal caving(SLTCC)mining technology is extensively employed in steeply inclined thick coal seams.Because of the typical characteristics of the short coal face in this mining method,a signifi-cant portion of the top coal is lost at the face end.For reducing the coal loss,the partially reverse drawing technique(PRDT)is proposed as a novel top coal drawing technique.Meanwhile,based on the Bergmark-Roos model(B-R model),a theoretical method for calculating the recovery ratio of top coal based on the top coal boundary equation and residual top coal amount is proposed.The mechanism of PRDT to reduce top coal loss at the face end is revealed by comparing with single-round sequential drawing technique(SSDT).Physical experiments and in-site observation data were used to verify the theoretical model.The results show that PRDT can effectively reduce the amount of residual coal near the roof by optimizing the shape characteristics of top coal boundary.Suggestions for improve recovery ratio in Wudong Coal Mine were given based on its face parameters.
文摘It is difficult if not impossible to appropriately and effectively select from among the vast pool of existing neural network machine learning predictive models for industrial incorporation or academic research exploration and enhancement. When all models outperform all the others under disparate circumstances, none of the models do. Selecting the ideal model becomes a matter of ill-supported opinion ungrounded on the extant real world environment. This paper proposes a novel grouping of the model pool grounded along a non-stationary real world data line into two groups: Permanent Data Learning and Reversible Data Learning. This paper further proposes a novel approach towards qualitatively and quantitatively demonstrating their significant differences based on how they alternatively approach dynamic and raw real world data vs static and prescient data mining biased laboratory data. The results across 2040 separate simulation runs using 15,600 data points in realistically operationally controlled data environments show that the two-group division is effective and significant with clear qualitative, quantitative and theoretical support. Results across the empirical and theoretical spectrum are internally and externally consistent yet demonstrative of why and how this result is non-obvious.