A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electric...A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.展开更多
In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identificatio...In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002.Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples.The original gas chromatography -flame ionization detec-tion (GC-FID) chromatogram of saturated hydrocarbons was compared.The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane,n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed.The correlation analysis on diagnostic ratios was performed with Student’s t-test.It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory.They both showed the fingerprinting character of mixed oil.The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character.The identification result not only gave support for the spilled oil investigation,but also served as an example for studying spilled oil accidents.展开更多
A three-dimensional(3D)step-by-step inversion strategy for audio magnetotellurics(AMT)is investigated in this study.The objective function is minimized by iteratively solving the Gauss-Newton normal equation,and the i...A three-dimensional(3D)step-by-step inversion strategy for audio magnetotellurics(AMT)is investigated in this study.The objective function is minimized by iteratively solving the Gauss-Newton normal equation,and the inversion region is discretized with unstructured tetrahedral elements.The inversion proceeds step-by-step from a coarse mesh to a fine mesh.In the inversion iteration process,a mesh is adaptively optimized according to the spatial gradient information about the model resistivity to fine delineate the boundaries of abnormal bodies.In the early stage of inversion execution,a coarse mesh is used for inversion,and the inversion stability is improved by reducing the number of inversion elements.In addition,mesh refinement is performed in the iterative inversion process.The inversion results obtained from the previous mesh are used as the reference and initial models for the next mesh iterative inversion.The step-by-step inversion strategy can ensure that the inversion is performed in the correct direction,improving the inversion stability and results gradually.Synthetic results show that the step-by-step inversion strategy with a Gauss-Newton method for 3D AMT inversion is stable and reliable,which lays a foundation for further practical 3D AMT data inversion.展开更多
We applied near-infrared(NIR)spectroscopy with chemometrics for the rapid and reagent-fee analysis of serum urea nitrogen(SUN).The modeling is based on the average effect of multiple sample partitions to achieve param...We applied near-infrared(NIR)spectroscopy with chemometrics for the rapid and reagent-fee analysis of serum urea nitrogen(SUN).The modeling is based on the average effect of multiple sample partitions to achieve parameter selection with stability.A multiparameter optimization platform with Norris derivative filter-partial least squares(Norris-PLS)was developed to select the most suitable mode(d=2,s=33,g=15).Using equidistant combination PLS(EC-PLS)with four parameters(initial wavelength I,number of wavelengths N,number of wavelength gaps G and latent variables LV),we performed wavelength screening after eliminating high-absorption wavebands.The optimal EC-PLS parameters were I=1228 nm,N=26,G=16 and LV=12.The root-mean square error(SEP),correlation coefficient(R_(p))for prediction and ratio of performance-to-deviation(RPD)for validation were 1.03 mmol L^(-1),0.992 and 7.6,respectively.We proposed the wavelength step-by-step phase-out PLS(WSP-PLS)to remove redun-dant wavelengths in the top 100 EC-PLS models with improved prediction performance.The combination of 19 wavelengths was identifed as the optimal model for SUN.The SEP,Rp and RPD in validation were 1.01 mmol L^(-1),0.992 and 7.7,respectively.The prediction effect and wavelength complexity were better than those of EC-PIS.Our results showed that NIR spectroscopy combined with the EC-PLS and WSP-PLS methods enabled the high-precision analysis ofSUN.WSP-PLS is a secondary optimization method that can further optimize any wavelength moc odel obtained through other continuous or discrete strategies to establish a simple and better model.展开更多
Objective: To evaluate the treatment outcomes of patients with pelvic ring injury by applying step-by-step external pelvic fixation and circular external fixation device.Methods: A total of 28 patients suffering from ...Objective: To evaluate the treatment outcomes of patients with pelvic ring injury by applying step-by-step external pelvic fixation and circular external fixation device.Methods: A total of 28 patients suffering from disintegrated pelvic ring injury are involved in the study. Fourteen patients(the treatment group) underwent step-by-step external pelvic fixation by applying anterior(anti-shock) and posterior modules. For the rest 14 patients(the experimental group), the osteosynthesis were conducted by means of a circular external fixation device. The long-term outcomes were evaluated in a year after the injury.Results: The residual deformity of 5(4–7) mm was observed in 10 patients(71.4%) from the experimental group. In the treatment group, the residual deformity was evident only in 4(28.6%) cases being 2.5(2–3) mm(P = 0.000 319) on the average. The functional result(according to the Majeed scale) was statistically better in the treatment group(P = 0.000 319). Nine(64.3%) and five(35.7%) patients in treatment group showed excellent and positive results, respectively. The excellent result was demonstrated by 3patients(21.4%) of the experimental group, the positive outcomes were observed in 6 cases(42.9%) and the unsatisfactory one was displayed by 1 patient(7.1%) of the same group.Conclusions: The modular approach applied is the advantage of the transosseous osteosynthesis allowing for a separate anterior(anti-shock) fixation and final posterior reposition of the pelvic ring preceded by the stabilization of vital functions. The above mentioned method gives an opportunity to increase the amount of techniques applied for the pelvic external fixation in polytrauma cases.展开更多
A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved ...A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.展开更多
A new active control method was proposed, in which the analytical control law was deduced by using a step by step integral method to differential equation of motion under the condition of static error being zero. This...A new active control method was proposed, in which the analytical control law was deduced by using a step by step integral method to differential equation of motion under the condition of static error being zero. This control law is terse in mathematical expression and convenient for practical use. The simulation results demonstrate that the proposed method can provide much more remarkable peak response reduction of seismically excited structures than the classical LQR method.展开更多
In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed bas...In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.展开更多
A simple algorithm is proposed for step-by-step time integration of stiff ODEs in Chemical Kinetics. No predictor-corrector technique is used within each step of the algorithm. It is assumed that species concentration...A simple algorithm is proposed for step-by-step time integration of stiff ODEs in Chemical Kinetics. No predictor-corrector technique is used within each step of the algorithm. It is assumed that species concentrations less than 10-6 mol·L-1 do not activate any chemical reaction. So, within each step, the time steplength Δt of the algorithm is determined from the fastest reaction rate maxR by the formula Δt = 10-6mol·L-1/max R. All the reversible elementary reactions occur simultaneously;however, by a simple book-keeping technique, the updating of species concentrations, within each step of the algorithm, is performed within each elementary reaction separately. The above proposed simple algorithm for Chemical Kinetics is applied to a simple model for hydrogen combustion with only five reversible elementary reactions (Initiation, Propagation, First and Second Branching, Termination by wall destruction) with six species (H2, O2, H, O, HO, H2O). These five reversible reactions are recommended in the literature as the most significant elementary reactions of hydrogen combustion [1] [2]. Based on the proposed here simple algorithm for Chemical Kinetics, applied to the global mechanism of proposed five reversible elementary reactions for hydrogen combustion, a simple and short computer program has been developed with only about 120 Fortran instructions. By this proposed program, the following are obtained: 1) The total species concentration of hydrogen combustion, starting from the sum of initial reactants concentrations [H2] + [O2], gradually diminishes, due to termination reaction by wall destruction, and tends to the final concentration of the product [H2O], that is to the 2/3 of its initial value, in accordance to the established overall stoichiometric reaction of hydrogen combustion 2H2 + O2 → 2H2O. 2) Time-histories for concentrations of main species H2, O2, H, H2O of hydrogen combustion, in explosion and equilibrium regions, obtained by the proposed program, are compared to corresponding ones obtained by accurate computational studies of [3]. 3) In the first step of the algorithm, the only nonzero species concentrations are those of reactants [H2], [O2]. So, the maximum reaction rate is that of the forward initiation reaction max R = Rif = kif[H2] [O2], where the rate constant kif is very slow. Thus, the first time steplength Δt1 = 10-6mol·L-1/max R results long in sec. After the first step, the sequences of all the following Δt’s are very short, in μsec. So, the first time steplength Δt1 can be considered as ignition delay time. 4) It is assumed that explosion corresponds to ignition delay time Δt1 t1 = 10 sec., can be considered as explosion limit curve. This curve is compared to the corresponding one obtained by the accurate computational studies of [2].展开更多
基金Project(51974192)supported by the National Natural Science Foundation of ChinaProject(201803D31044)supported by the Program for Key Research Project of Shanxi Province in the Field of Social Development,ChinaProject(201801D121092)supported by the Applied Basic Research Project of Shanxi Province,China。
文摘A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.
文摘In recent years,oil spill accidents occur frequently in the marine area of China.Finding out the spilled oil source is a key step in the relevant investigation.In this paper,a step-by-step fingerprinting identification method was used in a spilled oil accident in the Bohai Sea in 2002.Advanced chemical fingerprinting and data interpretation techniques were used to characterize the chemical composition and determine the possible sources of two spilled oil samples.The original gas chromatography -flame ionization detec-tion (GC-FID) chromatogram of saturated hydrocarbons was compared.The gas chromatography-mass spectrometry (GC/MS) chromatograms of aromatic hydrocarbons terpane and sterane,n-alkane and poly-aromatic hydrocarbons (PAHs) were analyzed.The correlation analysis on diagnostic ratios was performed with Student’s t-test.It is found that the oil fingerprinting of the spilled oil (designated as sz1) from the polluted sand beach was identical with the suspected oil (designated as ky1) from a nearby crude oil refinery factory.They both showed the fingerprinting character of mixed oil.The oil fingerprinting of the spilled oil (designated as ms1) collected from the port was significantly different from oil ky1 and oil sz1 and was with a lubricating oil fingerprint character.The identification result not only gave support for the spilled oil investigation,but also served as an example for studying spilled oil accidents.
文摘A three-dimensional(3D)step-by-step inversion strategy for audio magnetotellurics(AMT)is investigated in this study.The objective function is minimized by iteratively solving the Gauss-Newton normal equation,and the inversion region is discretized with unstructured tetrahedral elements.The inversion proceeds step-by-step from a coarse mesh to a fine mesh.In the inversion iteration process,a mesh is adaptively optimized according to the spatial gradient information about the model resistivity to fine delineate the boundaries of abnormal bodies.In the early stage of inversion execution,a coarse mesh is used for inversion,and the inversion stability is improved by reducing the number of inversion elements.In addition,mesh refinement is performed in the iterative inversion process.The inversion results obtained from the previous mesh are used as the reference and initial models for the next mesh iterative inversion.The step-by-step inversion strategy can ensure that the inversion is performed in the correct direction,improving the inversion stability and results gradually.Synthetic results show that the step-by-step inversion strategy with a Gauss-Newton method for 3D AMT inversion is stable and reliable,which lays a foundation for further practical 3D AMT data inversion.
基金supported by the Science and Technology Project of Guangdong Province of China(Nos.2014A020213016,2014A020212445)the University-enterprise Joint Research Project"Intelligent detection network technology joint research centre"(No.40115031).
文摘We applied near-infrared(NIR)spectroscopy with chemometrics for the rapid and reagent-fee analysis of serum urea nitrogen(SUN).The modeling is based on the average effect of multiple sample partitions to achieve parameter selection with stability.A multiparameter optimization platform with Norris derivative filter-partial least squares(Norris-PLS)was developed to select the most suitable mode(d=2,s=33,g=15).Using equidistant combination PLS(EC-PLS)with four parameters(initial wavelength I,number of wavelengths N,number of wavelength gaps G and latent variables LV),we performed wavelength screening after eliminating high-absorption wavebands.The optimal EC-PLS parameters were I=1228 nm,N=26,G=16 and LV=12.The root-mean square error(SEP),correlation coefficient(R_(p))for prediction and ratio of performance-to-deviation(RPD)for validation were 1.03 mmol L^(-1),0.992 and 7.6,respectively.We proposed the wavelength step-by-step phase-out PLS(WSP-PLS)to remove redun-dant wavelengths in the top 100 EC-PLS models with improved prediction performance.The combination of 19 wavelengths was identifed as the optimal model for SUN.The SEP,Rp and RPD in validation were 1.01 mmol L^(-1),0.992 and 7.7,respectively.The prediction effect and wavelength complexity were better than those of EC-PIS.Our results showed that NIR spectroscopy combined with the EC-PLS and WSP-PLS methods enabled the high-precision analysis ofSUN.WSP-PLS is a secondary optimization method that can further optimize any wavelength moc odel obtained through other continuous or discrete strategies to establish a simple and better model.
文摘Objective: To evaluate the treatment outcomes of patients with pelvic ring injury by applying step-by-step external pelvic fixation and circular external fixation device.Methods: A total of 28 patients suffering from disintegrated pelvic ring injury are involved in the study. Fourteen patients(the treatment group) underwent step-by-step external pelvic fixation by applying anterior(anti-shock) and posterior modules. For the rest 14 patients(the experimental group), the osteosynthesis were conducted by means of a circular external fixation device. The long-term outcomes were evaluated in a year after the injury.Results: The residual deformity of 5(4–7) mm was observed in 10 patients(71.4%) from the experimental group. In the treatment group, the residual deformity was evident only in 4(28.6%) cases being 2.5(2–3) mm(P = 0.000 319) on the average. The functional result(according to the Majeed scale) was statistically better in the treatment group(P = 0.000 319). Nine(64.3%) and five(35.7%) patients in treatment group showed excellent and positive results, respectively. The excellent result was demonstrated by 3patients(21.4%) of the experimental group, the positive outcomes were observed in 6 cases(42.9%) and the unsatisfactory one was displayed by 1 patient(7.1%) of the same group.Conclusions: The modular approach applied is the advantage of the transosseous osteosynthesis allowing for a separate anterior(anti-shock) fixation and final posterior reposition of the pelvic ring preceded by the stabilization of vital functions. The above mentioned method gives an opportunity to increase the amount of techniques applied for the pelvic external fixation in polytrauma cases.
文摘A method is presented that coordinates the calculation of the displacement, velocity and acceleration of structures within the time-steps of different types of step-by-step integration. The dynamic equation is solved using an energy equation and the calculating data of the original method. The method presented is better than the original method in terms of calculating postulations and is in better conformity with the system's movement. Take the Wilson-θ method as an example. By using the coordination process, the calculation precision has been greatly im proved (reducing the errors by approximately 90% ), and the greater part of overshooting of the calculation result has been eliminated. The study suggests that the mal-coordination of the motion parameters within the time-step is the major factor that contributes to the result errors of step-by-step integration for the dynamic equation.
文摘A new active control method was proposed, in which the analytical control law was deduced by using a step by step integral method to differential equation of motion under the condition of static error being zero. This control law is terse in mathematical expression and convenient for practical use. The simulation results demonstrate that the proposed method can provide much more remarkable peak response reduction of seismically excited structures than the classical LQR method.
基金The National Natural Science Fund(No.50975227)The National High-tech R & D Program("863"Program)(No.2011AA100507-04)
文摘In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.
文摘A simple algorithm is proposed for step-by-step time integration of stiff ODEs in Chemical Kinetics. No predictor-corrector technique is used within each step of the algorithm. It is assumed that species concentrations less than 10-6 mol·L-1 do not activate any chemical reaction. So, within each step, the time steplength Δt of the algorithm is determined from the fastest reaction rate maxR by the formula Δt = 10-6mol·L-1/max R. All the reversible elementary reactions occur simultaneously;however, by a simple book-keeping technique, the updating of species concentrations, within each step of the algorithm, is performed within each elementary reaction separately. The above proposed simple algorithm for Chemical Kinetics is applied to a simple model for hydrogen combustion with only five reversible elementary reactions (Initiation, Propagation, First and Second Branching, Termination by wall destruction) with six species (H2, O2, H, O, HO, H2O). These five reversible reactions are recommended in the literature as the most significant elementary reactions of hydrogen combustion [1] [2]. Based on the proposed here simple algorithm for Chemical Kinetics, applied to the global mechanism of proposed five reversible elementary reactions for hydrogen combustion, a simple and short computer program has been developed with only about 120 Fortran instructions. By this proposed program, the following are obtained: 1) The total species concentration of hydrogen combustion, starting from the sum of initial reactants concentrations [H2] + [O2], gradually diminishes, due to termination reaction by wall destruction, and tends to the final concentration of the product [H2O], that is to the 2/3 of its initial value, in accordance to the established overall stoichiometric reaction of hydrogen combustion 2H2 + O2 → 2H2O. 2) Time-histories for concentrations of main species H2, O2, H, H2O of hydrogen combustion, in explosion and equilibrium regions, obtained by the proposed program, are compared to corresponding ones obtained by accurate computational studies of [3]. 3) In the first step of the algorithm, the only nonzero species concentrations are those of reactants [H2], [O2]. So, the maximum reaction rate is that of the forward initiation reaction max R = Rif = kif[H2] [O2], where the rate constant kif is very slow. Thus, the first time steplength Δt1 = 10-6mol·L-1/max R results long in sec. After the first step, the sequences of all the following Δt’s are very short, in μsec. So, the first time steplength Δt1 can be considered as ignition delay time. 4) It is assumed that explosion corresponds to ignition delay time Δt1 t1 = 10 sec., can be considered as explosion limit curve. This curve is compared to the corresponding one obtained by the accurate computational studies of [2].