For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removin...For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4+-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4+-N were 90%, 80%, and 90% in efluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.展开更多
In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor simila...In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor similar to UCT-type configuration and two-stage anoxic/oxic process.The simultaneous nitrogen and phosphorus removal capacities and the potential of denitrifying phosphorus removal,in particular,were investigated with four different feeding patterns using real municipal wastewater.The results showed that the feeding ratios(Q1)in the first stage determined the nutrient removal performance in the SFA 2/O system.The average phosphorus removal efficiency increased from 19.17% to 96.25% as Q1 was gradually increased from run 1 to run 4,but the nitrogen removal efficiency exhibited a different tendency,which attained a maximum 73.61%in run 3 and then decreased to 59.62%in run 4.As a compromise between nitrogen and phosphorus removal,run 3 (Q1=0.45Qtotal) was identified as the optimal and stable case with the maximum anoxic phosphorus uptake rate of 1.58 mg·(g MLSS)-1 ·h-1.The results of batch tests showed that ratio of the anoxic phosphate uptake capacity to the aerobic phosphate uptake capacity increased from 11.96% to 36.85% with the optimal influent feeding ratio to the system in run 3,which demonstrated that the denitrifying polyP accumulating organisms could be accumulated and contributed more to the total phosphorus removal by optimizing the inflow ratio distribution.However,the nitrate recirculation to anoxic zone and influent feeding ratios should be carefully controlled for carbon source saving.展开更多
A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape ...A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.展开更多
基金supported by Chinese Academy of Sciences (No. kzcx1-yw-06-20)the special fund from the State Key Laboratory of Environmental Aquatic Chemistry(No. 09Y06ESPCR)
文摘For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4+-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4+-N were 90%, 80%, and 90% in efluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.
基金Supported by the Project of Beijing Science and Technology Committee (D07050601500000)the National Key Science and Technology Special Projects (2008ZX07317-007-105)
文摘In order to enhance phosphorus removal in traditional step-feed anoxic/oxic nitrogen removal process,a modified pilot-scale step-feed anaerobic/anoxic/oxic(SFA 2/O) system was developed,which combined a reactor similar to UCT-type configuration and two-stage anoxic/oxic process.The simultaneous nitrogen and phosphorus removal capacities and the potential of denitrifying phosphorus removal,in particular,were investigated with four different feeding patterns using real municipal wastewater.The results showed that the feeding ratios(Q1)in the first stage determined the nutrient removal performance in the SFA 2/O system.The average phosphorus removal efficiency increased from 19.17% to 96.25% as Q1 was gradually increased from run 1 to run 4,but the nitrogen removal efficiency exhibited a different tendency,which attained a maximum 73.61%in run 3 and then decreased to 59.62%in run 4.As a compromise between nitrogen and phosphorus removal,run 3 (Q1=0.45Qtotal) was identified as the optimal and stable case with the maximum anoxic phosphorus uptake rate of 1.58 mg·(g MLSS)-1 ·h-1.The results of batch tests showed that ratio of the anoxic phosphate uptake capacity to the aerobic phosphate uptake capacity increased from 11.96% to 36.85% with the optimal influent feeding ratio to the system in run 3,which demonstrated that the denitrifying polyP accumulating organisms could be accumulated and contributed more to the total phosphorus removal by optimizing the inflow ratio distribution.However,the nitrate recirculation to anoxic zone and influent feeding ratios should be carefully controlled for carbon source saving.
文摘A pilot scale modified step-feed process was lmproved to increase nutrient/N ano P) ano organic removal operations from municipal wastewater. It combined the step-feed process and a method named "University of Cape Town (UCT)". The effect of nutrient ratios and inflow distribution ratios were studied. The highest uptake efficiency of 95% for chemical oxygen demand (COD) has been achieved at the inflow distribution ratio of 40/35/25. However, maximum removal efficiency obtained for total nitrogen (TN) and phosphorus at 93% and 78%, respectively. The average mixed liquor suspended solids (MLSS) was 5500 mg·L- 1. In addition, convenient values for dissolved oxygen (DO) concentration, and pH were obtained throughout different stages. The proposed system was identified to be an appropriate enhanced biological nutrient removal process for wastewater treatment plants owing to relatively high nutrient removal, sturdy sludge settle ability and COD removal.