The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent det...The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.展开更多
Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution we...Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution were used to prepare sheet film sample of Fe2 O3-CAO by thermal decomposition at high temperature. In-situ observation was con-ducted using a stereo optical microscope and a hot-stage. And reduction kinetics of samples was studied by thermo gravimetrie (TG) method. Some samples after reduction were analyzed by using the scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and fourier transform infrared (FT-IR) spectrometer. Results indi-cate that during the reduction of iron oxides with CO, metallic iron is mostly precipitated as whisker and the precipi- tation behavior mainly depends on reduction rate. Doping CaO can significantly increase the reduction rate and effec-tively change the precipitation morphology of metallic iron after the reduction. When CaO doping concentration is less than 4% (mass percent), CaO can promote whisker formation of reduced iron; as it reaches 6% (mass per- cent), CaO inhibits iron whiskers growth; as it is more than 8% (mass percent), no whiskers could be observed. Therefore, controlling the quantity of Ca^2+ is effective to control the formation and growth of iron whiskers during gaseous reduction and thus eliminating ore grain sticking caused by intertexture of iron whiskers.展开更多
基金National Natural Science Foundation of China(11903005,11563004,11475190)。
文摘The LHAASO-WFCTA experiment,which aims to observe cosmic rays in the sub-EeV range using the fluorescence technique,uses a new generation of high-performance telescopes.To ensure that the experiment has ex-cellent detection capability associated with the measurement of the energy spectrum,the primary composition of cosmic rays,and so on,an accurate geometrical reconstruction of air-shower events is fundamental.This paper de-scribes the development and testing of geometrical reconstruction for stereo viewed events using the WFCTA(Wide Field of view Cherenkov/Fluorescence Telescope Array)detectors.Two approaches,which take full advantage ofthe WFCTA detectors.are investigated.One is the stereo-angular method,which uses the pointing of triggered SiPMs in the shower trajectory,and the other is the stereo-timing method,which uses the triggering time of the fired SiPMs.The results show that both methods have good geometrical resolution:the resolution of the stereo-timing method is slightly better than the stereo-angular method because the resolution of the latter is slightly limited by the shower track length.
基金Item Sponsored by National Natural Science Foundation of China ( 50834007 )National Basic Research Program of China ( 2012CB720401 )
文摘Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution were used to prepare sheet film sample of Fe2 O3-CAO by thermal decomposition at high temperature. In-situ observation was con-ducted using a stereo optical microscope and a hot-stage. And reduction kinetics of samples was studied by thermo gravimetrie (TG) method. Some samples after reduction were analyzed by using the scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and fourier transform infrared (FT-IR) spectrometer. Results indi-cate that during the reduction of iron oxides with CO, metallic iron is mostly precipitated as whisker and the precipi- tation behavior mainly depends on reduction rate. Doping CaO can significantly increase the reduction rate and effec-tively change the precipitation morphology of metallic iron after the reduction. When CaO doping concentration is less than 4% (mass percent), CaO can promote whisker formation of reduced iron; as it reaches 6% (mass per- cent), CaO inhibits iron whiskers growth; as it is more than 8% (mass percent), no whiskers could be observed. Therefore, controlling the quantity of Ca^2+ is effective to control the formation and growth of iron whiskers during gaseous reduction and thus eliminating ore grain sticking caused by intertexture of iron whiskers.