Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in formi...Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.展开更多
Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D p...Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.展开更多
Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concep...Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concept designing ranging from materials,devices to system integration;ii)conceptual design simpli-fication and improved practicality of IVD products;iii)shifting the IVD applications from centralized labs to point-of-care testing(POCT).In this review,the latest developments of 3D printing and its advantages in IVD applications are summarized.A series of 3D-printed objects for IVD applications,including single-function modules,multi-function devices which integrate several single-function modules for specific an-alytical applications such as sample pre-treatment and chemo-/bio-sensing,and all-in-one systems which integrate multi-function devices and the instrument operating them,are analyzed from the perspective of functional integration.The current and potential commercial applications of 3D-printed objects in the IVD field are highlighted.The features of 3D printing,especially rapid prototyping and low start-up,en-able the easy fabrication of bespoke modules,devices and systems for a range of analytical applications,and broadens the commercial IVD prospects.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52130204,52174376,51822405)Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+5 种基金Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)The Youth Innovation Team of Shaanxi UniversitiesJoint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(2020GXLH-Z-024)Key R&D Program of Shaan Xi Province(No.2019ZDLGY 04-04)Fundamental Research Funds for the Central Universities(No.D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056 and CX2021066),China。
文摘Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB1107200)the National Natural Science Foundation of China(Grant No.51772270)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2018-WNLOKF005)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences.
文摘Additive manufacturing(AM),which is also known as three-dimensional(3D)printing,uses computer-aided design to build objects layer by layer.Here,we focus on the recent progress in the development of techniques for 3D printing of glass,an important optoelectronic material,including fused deposition modeling,selective laser sintering/melting,stereolithography(SLA)and direct ink writing.We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects.In addition,we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects.This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.
基金supported by the National Nat-ural Science Foundation of China(No.51975597)the Guang-dong Natural Science Foundation(No.2020A1515010661)+2 种基金the Sci-ence and Technology Project of Guangzhou(No.201803020026)the General Program of Shenzhen Innovation Funding(Nos.JCYJ20170818164246179 and JCYJ20170307140752183)the Fundamental Research Funds for the Central Universities(No.20lgzd27).
文摘Biomedicine is one of the fastest growing areas of additive manufacturing.Especially,in the field of in vitro diagnostics(IVD),contributions of 3D printing include i)rapid prototyping and iterative IVD proof-of-concept designing ranging from materials,devices to system integration;ii)conceptual design simpli-fication and improved practicality of IVD products;iii)shifting the IVD applications from centralized labs to point-of-care testing(POCT).In this review,the latest developments of 3D printing and its advantages in IVD applications are summarized.A series of 3D-printed objects for IVD applications,including single-function modules,multi-function devices which integrate several single-function modules for specific an-alytical applications such as sample pre-treatment and chemo-/bio-sensing,and all-in-one systems which integrate multi-function devices and the instrument operating them,are analyzed from the perspective of functional integration.The current and potential commercial applications of 3D-printed objects in the IVD field are highlighted.The features of 3D printing,especially rapid prototyping and low start-up,en-able the easy fabrication of bespoke modules,devices and systems for a range of analytical applications,and broadens the commercial IVD prospects.