Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge...The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.展开更多
Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants ...Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants of a rice exocyst subunit gene SEC3A,sec3a-1 and sec3a-2,showed anther indehiscence at anthesis and male sterility at maturity.Pollen viability and germination in the mutants were partly defective,whereas their female gametes undergone a normal development.Hybrid or self-pollinated seeds could be produced by artificial pollination,suggesting potential use of a weak sec3a mutant as a female line during hybrid breeding.SEC3A is widely expressed in various tissues,including anther walls.Further results showed an excessive IAA accumulation and no endothecium lignification in sec3a-1/2 anthers.Our findings suggest that SEC3A appears to regulate anther dehiscence by modulating auxin signaling,providing insights into regulation of anther dehiscence and function of exocyst in plants.展开更多
Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which...Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.展开更多
The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa a...The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.展开更多
Objective:To assess the factors associated with knowledge,attitude and behavior of contraception use among urban slum population in Chennai.Methods:A cross-sectional study was conducted in the urban slum of Anakaputhu...Objective:To assess the factors associated with knowledge,attitude and behavior of contraception use among urban slum population in Chennai.Methods:A cross-sectional study was conducted in the urban slum of Anakaputhur,Chennai.Married couples between ages of 19-49 years and living in slum areas were taken up for the study by simple random sampling.Pregnant women,postnatal and postmenopausal women were excluded from the study.Data collection was done using a pretested structured questionnaire focusing on details regarding contraception knowledge,attitude,and practices.Data analysis was done using IBM SPSS version 22.Analytical test like Chi square and odds ratio(OR)were used to identify association between knowledge,attitude,and behavior of contraception with the associated variables and enter method of logistic regression analysis was done.Results:Out of the 360 respondents,228 were females,with a mean age of(34±5)years.Approximately 43%demonstrated adequate knowledge of contraception use,and 91%were aware of at least one contraceptive method.Notably,72%exhibited a positive attitude towards contraceptive use.Nevertheless,43%(155 individuals)did not utilize any contraceptive method.Among contraceptive users,intrauterine devices were the most commonly adopted,followed by barrier methods and female sterilization.There was significant association between knowledge of contraception and education(aOR 7.29,95%CI 2.93-18.10,P<0.05),age(aOR 2.04,95%CI 1.19-3.50,P<0.05)and socioeconomic class(aOR 3.66,95%CI 1.71-7.85,P<0.05;aOR 3.97,95%CI 2.12-7.49,P<0.05).Regarding attitude towards contraception use,education(aOR 8.54,95%CI 2.35-31.03,P<0.05),sex(aOR 0.15,95%CI 0.06-0.37,P<0.05),age(aOR 0.53,95%CI 0.28-0.99,P<0.05),socio-economic class(aOR 4.42,95%CI 1.97-9.92,P<0.05;aOR 9.83,95%CI 3.63-26.58,P<0.05)and number of children(aOR 10.04,95%CI 4.26-23.66,P<0.05)were the variables that had a significant association.Conclusions:These findings underscore the imperative for enhanced dissemination of health education pertaining to contraception use within the slum population.The health sectors of the area and other stakeholders need to make sure to extend penetration of family planning related services to the urban slum population.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with ...There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ...The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.展开更多
Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been pro...Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.展开更多
Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the...Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.展开更多
Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a...Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.展开更多
Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts o...Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.展开更多
Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyan...Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyanoacrylate tissue adhesive application as treatment between March 2021 and March 2022 at Preah Ang Duong Hospital. The primary outcome measure was success rate of CTA application, while the secondary outcome was to measure postoperative best-corrected visual acuity (BCVA) and ocular complications. Results: The mean age of patients was 44.15 ± 16.05 years old and 7 (35%) were female. Causes of perforation were microbial infection in 12 patients (60%), trauma in 5 patients (25%), and sterile melting in 3 patients (15%). The perforation of size smaller than 1.5 mm was in 8 patients (40%) while 12 patients (60%) had perforated size between 1.5 mm to 3 mm. The perforation was 60% (12 patients) central, 25% (5 patients) paracentral, and 15% (3 patients) peripherally. Out of 20 patients, 5 patients (25%) received CTA application more than 1 time. The mean glue retention was 57.60 ± 31.84 days. Success rate of glue application (defined as intact globe without surgical intervention regardless of number of CTA applications) was 85%. At the last visit, 7 patients (35%) had BCVA of 6/120 or better. Common complications were uveitis (45%), ocular hypertension (30%), cataract (25%) and neovascularization (20%). No serious complications were found. Conclusion: Cyanoacrylate tissue adhesive is an effective treatment option in sealing corneal perforations with no serious complications. .展开更多
Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The go...Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.展开更多
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require th...Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require the participation of male(stamen)and female(pistil)reproductive organs.Male-or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables.In this review we will focus on the types of genic male sterility and factors affecting female fertility,summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops[mainly tomato(Solanum lycopersicum)and cucumber(Cucumis sativus)],and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production,in order to provide a reference for fertility-related germplasm innovation.展开更多
Genetic control strategies such as the sterile insect technique have successfully fought insect pests worldwide. The CRISPR(clustered regularly interspaced short palindromic repeats) technology, together with high-qua...Genetic control strategies such as the sterile insect technique have successfully fought insect pests worldwide. The CRISPR(clustered regularly interspaced short palindromic repeats) technology, together with high-quality genomic resources obtained in more and more species, greatly facilitates the development of novel genetic control insect strains that can be used in area-wide and species-specific pest control programs. Here, we review the research progress towards state-of-art CRISPR-based genetic control strategies, including gene drive, sex ratio distortion, CRISPRengineered genetic sexing strains, and precision-guided sterile insect technique. These strategies’ working mechanisms,potential resistance development mechanisms, and regulations are illustrated and discussed. In addition, recent developments such as stacked and conditional systems are introduced. We envision that the advances in genetic technology will continue to be one of the driving forces for developing the next generation of pest control strategies.展开更多
Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilizat...Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.展开更多
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
文摘The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(32171970)the Chongqing Outstanding Scientists Project(cstc2022ycjh-bgzxm0073)the Natural Science Foundation of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants of a rice exocyst subunit gene SEC3A,sec3a-1 and sec3a-2,showed anther indehiscence at anthesis and male sterility at maturity.Pollen viability and germination in the mutants were partly defective,whereas their female gametes undergone a normal development.Hybrid or self-pollinated seeds could be produced by artificial pollination,suggesting potential use of a weak sec3a mutant as a female line during hybrid breeding.SEC3A is widely expressed in various tissues,including anther walls.Further results showed an excessive IAA accumulation and no endothecium lignification in sec3a-1/2 anthers.Our findings suggest that SEC3A appears to regulate anther dehiscence by modulating auxin signaling,providing insights into regulation of anther dehiscence and function of exocyst in plants.
基金the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY24C130004,LY22C135104,and LY23C130002)the National Natural Science Foundation of China(Grant No.31501288)+1 种基金the Open Project Program of State Key Laboratory of Rice Biology and Breeding,China(Grant No.20210207)Central Publicinterest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202203).
文摘Two-line hybrid rice with excellent quality is preferred in the Chinese market.However,there is a trade-off between reducing costs for hybrid seed production and lowering the outcrossing rate of the sterile line,which is largely determined by the stigma exsertion rate(SER).In this study,we constructed mutants of male sterility lines with improved grain length(GL)and SER in three elite early-season indica rice varieties through targeted manipulation of the TMS5 and GS3 genes using CRISPR/Cas9-mediated multiplex systems.We obtained a series of marker-free gs3 single mutants and gs3tms5 double mutants with significantly higher SER,longer grains,and increased 1000-grain weight compared with the wild type(WT).Importantly,the typically thermo-sensitive genic male sterile(TGMS)trait with a higher SER was observed in gs3tms5 mutants,and their F1 hybrids exhibited remarkable improvements in grain shape and yield-related traits.Our findings provided an efficient method to generate new valuable TGMS germplasm with improved SER through the mutagenesis of GS3 and TMS5 synergistically,and demonstrated that GS3 had pleiotropic effects on grain size,SER,and grain quality in early-season indica rice.
基金We thank the Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation,China(2022021302024852)The Science and Technology Support Project of Rural Vitalization in Hubei Province,China(2022BBA121)+1 种基金the Key Research and Development Project of Hubei Province,China(2021BBA097)The Key Research and Development Project of Hubei Province,China(2021BBA102)。
文摘The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.
文摘Objective:To assess the factors associated with knowledge,attitude and behavior of contraception use among urban slum population in Chennai.Methods:A cross-sectional study was conducted in the urban slum of Anakaputhur,Chennai.Married couples between ages of 19-49 years and living in slum areas were taken up for the study by simple random sampling.Pregnant women,postnatal and postmenopausal women were excluded from the study.Data collection was done using a pretested structured questionnaire focusing on details regarding contraception knowledge,attitude,and practices.Data analysis was done using IBM SPSS version 22.Analytical test like Chi square and odds ratio(OR)were used to identify association between knowledge,attitude,and behavior of contraception with the associated variables and enter method of logistic regression analysis was done.Results:Out of the 360 respondents,228 were females,with a mean age of(34±5)years.Approximately 43%demonstrated adequate knowledge of contraception use,and 91%were aware of at least one contraceptive method.Notably,72%exhibited a positive attitude towards contraceptive use.Nevertheless,43%(155 individuals)did not utilize any contraceptive method.Among contraceptive users,intrauterine devices were the most commonly adopted,followed by barrier methods and female sterilization.There was significant association between knowledge of contraception and education(aOR 7.29,95%CI 2.93-18.10,P<0.05),age(aOR 2.04,95%CI 1.19-3.50,P<0.05)and socioeconomic class(aOR 3.66,95%CI 1.71-7.85,P<0.05;aOR 3.97,95%CI 2.12-7.49,P<0.05).Regarding attitude towards contraception use,education(aOR 8.54,95%CI 2.35-31.03,P<0.05),sex(aOR 0.15,95%CI 0.06-0.37,P<0.05),age(aOR 0.53,95%CI 0.28-0.99,P<0.05),socio-economic class(aOR 4.42,95%CI 1.97-9.92,P<0.05;aOR 9.83,95%CI 3.63-26.58,P<0.05)and number of children(aOR 10.04,95%CI 4.26-23.66,P<0.05)were the variables that had a significant association.Conclusions:These findings underscore the imperative for enhanced dissemination of health education pertaining to contraception use within the slum population.The health sectors of the area and other stakeholders need to make sure to extend penetration of family planning related services to the urban slum population.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金supported by:the National Natural Science Foundation of China under Grant Nos.62163009 and 61864001the Natural Science Foundation of Guangxi Province under Grant No.2021JJD170019+1 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant No.YQ23103the Innovation Project of Guangxi Graduate Education under Grant No.YCSW2022277.
文摘There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
基金supported by the National Natural Science Foundation of China(32372118,32188102,32071993)the Qian Qian Academician Workstation,Specific Research Fund of the Innovation Platform for Academicians in Hainan Province(YSPTZX202303)+1 种基金Key Research and Development Program of Zhejiang Province(2021C02056)Hainan Seed Industry Laboratory,China(B21HJ0220)。
文摘The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.
基金supported by the Fund for the Biological Breeding-Major Projects in National Science and Technology(2023ZD04038)the Key Project for Agricultural Breakthrough in Core Technology of Xinjiang Production and Construction Crops(NYHXGG,2023AA102)the Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)。
文摘Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.
基金supported by the Key Scientific and Technological Research Projects of Henan Province (Grant No. 202102110133)Special Innovation Fund of Henan Agricultural University (Grant No. KJCX2019C04)。
文摘Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality.
基金supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2022C012)China Postdoctoral Science Foundation(Grant No.2022MD713728)+1 种基金Heilongjiang Provincial Postdoctoral Fund(Grant No.LBHZ21046)the Open Project of Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Northeast Region),Ministry of Agriculture and Rural Affairs,and National Key Research and Development Program of China(Grant No.2023YFD1201501).
文摘Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.
文摘Ozone is a green broad-spectrum bactericidal disinfectant, and a trace amount of ozone in the atmosphere makes many viruses and bacteria lose their biochemical activity and infectivity. Nature produces trace amounts of ozone in the air through lightning to purify the ecological environment. The product of ozone decomposition is oxygen, without secondary pollution. Ozone sterilizer is widely used in the epidemic prevention and control of intensive breeding farms and achieved remarkable results. If the concentration and action time of ozone can be accurately controlled, then ozone can quickly eliminate pathogens, without harming the normal cells in the human body. How to use medical ozone for epidemic prevention, treatment and health care is a subject worthy of serious study, which should arouse the attention of the experts in the field.
文摘Purpose: The study was to evaluate the efficacy of cyanoacrylate tissue adhesive (CTA) application in corneal perforations. Method: This was a prospective study on 20 patients of corneal perforations who received cyanoacrylate tissue adhesive application as treatment between March 2021 and March 2022 at Preah Ang Duong Hospital. The primary outcome measure was success rate of CTA application, while the secondary outcome was to measure postoperative best-corrected visual acuity (BCVA) and ocular complications. Results: The mean age of patients was 44.15 ± 16.05 years old and 7 (35%) were female. Causes of perforation were microbial infection in 12 patients (60%), trauma in 5 patients (25%), and sterile melting in 3 patients (15%). The perforation of size smaller than 1.5 mm was in 8 patients (40%) while 12 patients (60%) had perforated size between 1.5 mm to 3 mm. The perforation was 60% (12 patients) central, 25% (5 patients) paracentral, and 15% (3 patients) peripherally. Out of 20 patients, 5 patients (25%) received CTA application more than 1 time. The mean glue retention was 57.60 ± 31.84 days. Success rate of glue application (defined as intact globe without surgical intervention regardless of number of CTA applications) was 85%. At the last visit, 7 patients (35%) had BCVA of 6/120 or better. Common complications were uveitis (45%), ocular hypertension (30%), cataract (25%) and neovascularization (20%). No serious complications were found. Conclusion: Cyanoacrylate tissue adhesive is an effective treatment option in sealing corneal perforations with no serious complications. .
文摘Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
基金This work was supported by National Natural Science Foundation of China(32025033)and(31930097)the Chinese Universities Scientific Fund(2022TC009).
文摘Vegetable crops are greatly appreciated for their beneficial nutritional and health components.Hybrid seeds are widely used in vegetable crops for advantages such as high yield and improved resistance,which require the participation of male(stamen)and female(pistil)reproductive organs.Male-or female-sterile plants are commonly used for production of hybrid seeds or seedless fruits in vegetables.In this review we will focus on the types of genic male sterility and factors affecting female fertility,summarize typical gene function and research progress related to reproductive organ identity and sporophyte and gametophyte development in vegetable crops[mainly tomato(Solanum lycopersicum)and cucumber(Cucumis sativus)],and discuss the research trends and application perspectives of the sterile trait in vegetable breeding and hybrid production,in order to provide a reference for fertility-related germplasm innovation.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)within project numbers 470105316/YA 502/3-1(to Ying Yan)and SCHE 1833/7-1(to Marc F.Schetelig)。
文摘Genetic control strategies such as the sterile insect technique have successfully fought insect pests worldwide. The CRISPR(clustered regularly interspaced short palindromic repeats) technology, together with high-quality genomic resources obtained in more and more species, greatly facilitates the development of novel genetic control insect strains that can be used in area-wide and species-specific pest control programs. Here, we review the research progress towards state-of-art CRISPR-based genetic control strategies, including gene drive, sex ratio distortion, CRISPRengineered genetic sexing strains, and precision-guided sterile insect technique. These strategies’ working mechanisms,potential resistance development mechanisms, and regulations are illustrated and discussed. In addition, recent developments such as stacked and conditional systems are introduced. We envision that the advances in genetic technology will continue to be one of the driving forces for developing the next generation of pest control strategies.
文摘Objective:To analyze the effect of quality control circle on the central sterile supply department(CSSD).Methods:The control group and the observation group each consisted of 180 instruments received by the sterilization supply center from January to March 2023 and 11 CSSD staff.The control group underwent routine management while quality control circle was implemented in the observation group.The quality of work,disinfection and sterilization qualification rates,disinfection and sterilization of various instruments,cleaning indicators,and management satisfaction of both groups were compared.Results:The observation group scored higher in terms of work quality,the qualification rate of disinfection and sterilization in each link,the disinfection and sterilization of instruments,and cleaning indicators compared to the control group.Besides,the management satisfaction of the observation group was higher than that of the control group(P<0.05).Conclusion:A quality control circle ensures the quality of work,improves the cleaning,disinfection,and sterilization of instruments of the CSSD,and improves the management satisfaction of the CSSD staff.