Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex var...Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex variable function, a series' of conformal mapping functions are obtained from different cutouts' boundary curves in the developed plane of a cylindrical shell to the unit circle. And, the general expressions for the equations of a cylindrical shell, including the solutions of stress concentrations meeting the boundary conditions of the large openings' edges, are given in the mapping plane. Furthermore, by applying the orthogonal function expansion technique, the problem can be summarized into the solution of infinite algebraic equation series. Finally, numerical results are obtained for stress concentration factors at the cutout's edge with various opening's ratios and different loading conditions. This new method, at the same time, gives a possibility to the research of cylindrical shells with large non-circular openings or with nozzles.展开更多
This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitra...This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.展开更多
文摘Based on Donnell's shallow shell equation, a new method is given in this paper to analyze theoretical solutions of stress concentrations about cylindrical shells with large openings. With the method of complex variable function, a series' of conformal mapping functions are obtained from different cutouts' boundary curves in the developed plane of a cylindrical shell to the unit circle. And, the general expressions for the equations of a cylindrical shell, including the solutions of stress concentrations meeting the boundary conditions of the large openings' edges, are given in the mapping plane. Furthermore, by applying the orthogonal function expansion technique, the problem can be summarized into the solution of infinite algebraic equation series. Finally, numerical results are obtained for stress concentration factors at the cutout's edge with various opening's ratios and different loading conditions. This new method, at the same time, gives a possibility to the research of cylindrical shells with large non-circular openings or with nozzles.
基金Project supported by the National Natural Science Foundation of China (Nos. 51209052, 51279038, and 51479041), the Natural Sci- ence Foundation of Heilongjiang Province (No. QC2011C013), and the Opening Funds of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (No. 1307), China
文摘This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.