The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by K...The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by Koiter-boundary layer singular perturbation method in this paper. It is demonstrated that the method has high computing efficiency and accuracy based on the analysis of AS-2 shell, and some new conclusions can be directly obtained from the perturbation formulas which are very well in agreement with experimental phenomenon of axially compressed stiffened cylindrical shells.展开更多
posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer t...posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.展开更多
A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer...A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.展开更多
Buckling and postbuckling behaviors of perfect and imperfect, stringer and ortho/ropically stiffened cylindrical shells have been studied under axial compression. Based on the boundary la ver theory for the buckling o...Buckling and postbuckling behaviors of perfect and imperfect, stringer and ortho/ropically stiffened cylindrical shells have been studied under axial compression. Based on the boundary la ver theory for the buckling oj thin elastic shells suggested in ref. [1], a theoretical analysis is presented. The effects of material properties of stiffenefs and skin, which are made of different materials, on the huckling load and postbuckling behavior of stiffened cylindrical shells have also been discussed.展开更多
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well a...Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.展开更多
Based on the governing equation of vibration of a kind of cylindrical shells written in a matrix differential equation of the first order, a new matrix method is presented for steady-state vibration analysis of a nonc...Based on the governing equation of vibration of a kind of cylindrical shells written in a matrix differential equation of the first order, a new matrix method is presented for steady-state vibration analysis of a noncircular cylindrical shell simply sup- ported at two ends and circumferentially stiffened by rings under harmonic pressure. Its difference from the existing works by Yamada and Irie is that the matrix differential equation is solved by using the extended homogeneous capacity precision integration' approach other than the Runge-Kutta-Gill integration method. The transfer matrix can easily be determined by a high precision integration scheme. In addition, besides the normal interacting forces, which were commonly adopted by researchers earlier, the tangential interacting forces between the cylindrical shell and the rings are considered at the same time by means of the Dirac-δ function. The effects of the exciting frequencies on displacements and stresses responses have been investigated. Numerical results show that the proposed method is more efficient than the aforementioned method.展开更多
The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by th...The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by the elastic foundations in the thermal environments, is investigated with an analytical method. The shells are reinforced by FGM stringers and rings. The thermal elements of the shells and stiffeners in the fundamental equations are considered. The equilibrium and nonlinear stability equations in terms of the displacement components for the stiffened shells are derived with the third-order shear deformation theory and Leckhniskii smeared stiffener technique. The closed-form expressions for determining the buckling load and postbuckling load-deflection curves are obtained with the Galerkin method. The effects of the stiffeners, the foundations, the material and dimensional parameters, and the pre-existent axial compressive and thermal load are considered.展开更多
In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (...In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (FGM) sandwich under an axial loading on elastic foundations, and the shells are considered in a thermal environment. The shells are stiffened by FGM rings and stringers. A general sigmoid law and a general power law are proposed. Thermal elements of the shells and reinforcement stiffeners are considered. Explicit expressions to find critical loads and postbuckling load-deflection curves are obtained by applying the Galerkin method and choosing the three-term approximate solution of deflection. Numerical results show various effects of temperature, elastic foundation, stiffeners, material and geometrical properties, and the ratio between face sheet thickness and total thickness on the nonlinear behavior of shells.展开更多
A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. T...A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.展开更多
The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by usin...The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by using Flügge equation and Hamilton variational principle, and the responses of the shell are obtained. By use of the basic definition of the power flow, the characteristics of axial propagation of the power flow supplied by input structure and carried by different shell internal forces of a forced shell are investigated. The effects of parameters, such as relative location of driving force and stringer, driving force type and structural damping on the vibrational power flows in the shell, are discussed. These provide some theoretical bases for vibration control and noise reduction of this kind of structure.展开更多
文摘The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by Koiter-boundary layer singular perturbation method in this paper. It is demonstrated that the method has high computing efficiency and accuracy based on the analysis of AS-2 shell, and some new conclusions can be directly obtained from the perturbation formulas which are very well in agreement with experimental phenomenon of axially compressed stiffened cylindrical shells.
文摘posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.
文摘A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.
文摘Buckling and postbuckling behaviors of perfect and imperfect, stringer and ortho/ropically stiffened cylindrical shells have been studied under axial compression. Based on the boundary la ver theory for the buckling oj thin elastic shells suggested in ref. [1], a theoretical analysis is presented. The effects of material properties of stiffenefs and skin, which are made of different materials, on the huckling load and postbuckling behavior of stiffened cylindrical shells have also been discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.10172038)
文摘Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.
基金Project supported by the Doctoral Foundation of the National Education Ministry of China(No.20040487013)
文摘Based on the governing equation of vibration of a kind of cylindrical shells written in a matrix differential equation of the first order, a new matrix method is presented for steady-state vibration analysis of a noncircular cylindrical shell simply sup- ported at two ends and circumferentially stiffened by rings under harmonic pressure. Its difference from the existing works by Yamada and Irie is that the matrix differential equation is solved by using the extended homogeneous capacity precision integration' approach other than the Runge-Kutta-Gill integration method. The transfer matrix can easily be determined by a high precision integration scheme. In addition, besides the normal interacting forces, which were commonly adopted by researchers earlier, the tangential interacting forces between the cylindrical shell and the rings are considered at the same time by means of the Dirac-δ function. The effects of the exciting frequencies on displacements and stresses responses have been investigated. Numerical results show that the proposed method is more efficient than the aforementioned method.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘The postbuckling of the eccentrically stiffened circular cylindrical shells made of functionally graded materials (FGMs), subjected to the axial compressive load and external uniform pressure and filled inside by the elastic foundations in the thermal environments, is investigated with an analytical method. The shells are reinforced by FGM stringers and rings. The thermal elements of the shells and stiffeners in the fundamental equations are considered. The equilibrium and nonlinear stability equations in terms of the displacement components for the stiffened shells are derived with the third-order shear deformation theory and Leckhniskii smeared stiffener technique. The closed-form expressions for determining the buckling load and postbuckling load-deflection curves are obtained with the Galerkin method. The effects of the stiffeners, the foundations, the material and dimensional parameters, and the pre-existent axial compressive and thermal load are considered.
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2015.11)
文摘In this paper, Donnell's shell theory and smeared stiffeners technique are improved to analyze the postbuckling and buckling behaviors of circular cylindrical shells of stiffened thin functionally graded material (FGM) sandwich under an axial loading on elastic foundations, and the shells are considered in a thermal environment. The shells are stiffened by FGM rings and stringers. A general sigmoid law and a general power law are proposed. Thermal elements of the shells and reinforcement stiffeners are considered. Explicit expressions to find critical loads and postbuckling load-deflection curves are obtained by applying the Galerkin method and choosing the three-term approximate solution of deflection. Numerical results show various effects of temperature, elastic foundation, stiffeners, material and geometrical properties, and the ratio between face sheet thickness and total thickness on the nonlinear behavior of shells.
基金Financial support from the National Hi-tech Research and Development Program of China is much appreciated
文摘A stiffened cylindrical shell is normally used in refuge chambers of a coal mine. Based on the method of application and shape characteristics of a refuge chamber, we simplified its shell as an orthotropic cylinder. The basic buckling equation of the stiffened cylindrical shell under uniform axial compression was deduced by using a Donnell function. The factors affecting its buckling capacity were studied by theoretical analysis and numerical calculations. The results reveal that the torsional rigidity of the longitudinal stiffener had little effect on the buckling capacity of the shell and that the critical load of an externally stiffened cylindrical shell is higher than that of an internally stiffened cylindrical shell.
文摘The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by using Flügge equation and Hamilton variational principle, and the responses of the shell are obtained. By use of the basic definition of the power flow, the characteristics of axial propagation of the power flow supplied by input structure and carried by different shell internal forces of a forced shell are investigated. The effects of parameters, such as relative location of driving force and stringer, driving force type and structural damping on the vibrational power flows in the shell, are discussed. These provide some theoretical bases for vibration control and noise reduction of this kind of structure.