Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared...Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared with those from virgin stiffened composite panel without any damage. A finite element analysis model was established for repaired and virgin stiffened composite panels under compressive load, the 3D Hashin criteria was applied to identify the composite structure failure, and the secondary stress criteria was adopted to identify the adhesive failure between the base laminate and the stiffener. The failure modes of repaired stiffened composite panels were stiffened composite panels breaking off along the bolt joints. The experimental results were consistent with the finite element analysis results, indicating the reliability of the finite element analysis model.展开更多
The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material p...The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.展开更多
In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of compar...In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.展开更多
The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the re...The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.展开更多
The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of e...The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.展开更多
The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equa...The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.展开更多
This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds...This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Through the low-frequency cyclic loading test, the cyclic behavior and failure mode of the specimen were investigated. The results of the test indicated the failure mode and bearing capacity of the specimen which were influenced by the axial compression ratio of the concrete-filled tubular column. On the contrary, the inner diaphragm and inner stiffeners had limited impacts on the hysteretic behavior of the joint. There was no hysteresis damage fracture on the narrow outer diaphragm connected to the concrete-filled steel tubular column with partial joint penetration welds. Due to the excellent ductility and energy dissipating capacity, the proposed joint could be applied to the seismic design of high-rise buildings in highly intensive seismic region, but axial compression ratio should be controlled to avoid unfavorable failure modes.展开更多
文摘Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared with those from virgin stiffened composite panel without any damage. A finite element analysis model was established for repaired and virgin stiffened composite panels under compressive load, the 3D Hashin criteria was applied to identify the composite structure failure, and the secondary stress criteria was adopted to identify the adhesive failure between the base laminate and the stiffener. The failure modes of repaired stiffened composite panels were stiffened composite panels breaking off along the bolt joints. The experimental results were consistent with the finite element analysis results, indicating the reliability of the finite element analysis model.
基金The Defence Advance Research Program of Science and Technology of Ship Industry(Grant No.11J1.3.1)
文摘The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.
文摘In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.
文摘The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.
基金supported by the National Natural Science Foundations of China (10772085,11272155 and 11132007)333 Project of Jiangsu Province,China(BRA2011172)NUST Research Funding,China(2011YBXM32)
文摘The dynamics for multi-link spatial flexible manipulator arms is investigated. The system considered here is an N-flexible-link manipulator driven by N DC-motors through N revolute flexiblejoints. The flexibility of each flexible joint is modeled as a linearly elastic torsional spring, and the mass of the joint is also considered. For the flexibility of the link, all of the stretching deformation, bending deformation and the torsional deformation are included. The complete governing equations of motion of the system are derived via the Lagrange equations. The nonlinear description of the deformation field of the flexible link is adopted in the dynamic modeling, and thus the dynamic stiffening effects are captured. Based on this model, a general-purpose software package for dynamic simulation of multi-link spatial flexible manipulator arms is developed. Several illustrative examples are given to validate the algorithm presented in this paper and to indicate that not only dynamic stiffening effects but also the flexibility of the structure has significant influence on the dynamic performance of the manipulator.
基金National Natural Science Foundation of China (No 50608054)
文摘The hollow spherical joints welded with circular pipes applied to the National Swimming Center of China are subjected to large bending moments, but the influence of bending moments is not considered in the design equations in Technical Specification for Latticed Shells. Based on the von Mises yield criterion, multilinear isotropic hardening rule and associated flow rule, the elasto-plastic finite element model is put forward to analyze the behavior of the joints, and a calculation method for the joints under bending moments or eccentric loads is proposed. It is shown by the analytical results of joint that the stiffening rib can improve the ultimate bearing capacity by 10% for joints under axial tensile load, by 40% for joints under axial compressive load, and by 50% for joints under bending moment. The unified calculation equations for joints with or without stiffening rib are put forward, which can be applied to calculating the ultimate bearing capacity of the hollow spherical joints with circular pipes under eccentric loads.
文摘This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Through the low-frequency cyclic loading test, the cyclic behavior and failure mode of the specimen were investigated. The results of the test indicated the failure mode and bearing capacity of the specimen which were influenced by the axial compression ratio of the concrete-filled tubular column. On the contrary, the inner diaphragm and inner stiffeners had limited impacts on the hysteretic behavior of the joint. There was no hysteresis damage fracture on the narrow outer diaphragm connected to the concrete-filled steel tubular column with partial joint penetration welds. Due to the excellent ductility and energy dissipating capacity, the proposed joint could be applied to the seismic design of high-rise buildings in highly intensive seismic region, but axial compression ratio should be controlled to avoid unfavorable failure modes.