This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry...This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.展开更多
As a critical structure of aerospace equipment,aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system.In this study,a GWO-ELM algorithm-based impact d...As a critical structure of aerospace equipment,aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system.In this study,a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft.Firstly,together with numerical simulation,the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed,to establish the damage data.Subsequently,the amplitude-frequency characteristics of impact damage signals are extracted and put into an extreme learning machine(ELM)model to identify the impact location and damage degree,and the Gray Wolf Optimization(GWO)algorithm is employed to update the weight parameters of the model.Finally,experiments are conducted on the irregular aluminum alloy stiffened plate with the size of 2200 mm×500 mm×10 mm,the identification accuracy of impact position and damage degree is 98.90% and 99.55% in 68 test areas,respectively.Comparative experiments with ELM and backpropagation neural networks(BPNN)demonstrate that the impact damage identification of aluminum alloy stiffened plate based on GWO-ELM algorithm can serve as an effective way to monitor spacecraft structural damage.展开更多
Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges...Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges. Based on the strain history, the accumulation of fatigue damage of the stiffened plates was estimated by means of the rainflow cycle counting technique and the Miner linear damage accumulation model in the time domain. Utilizing the change of natural frequencies, a nonlinear model was fitted for predicting the fatigue damage of plate and then the foregone failure criterion of 5% reduction in natural frequency is improved. The influence of section and spacing of the stiffeners on the vibration fatigue behavior of the aluminum plate was investigated. The results show that the fatigue life of aluminum plate increases with adding either T or L section riveted stiffeners. With the same cross-sectional area of stiffener, the T section stiffened plate shows longer fatigue life than L section stiffened plate. Meanwhile, the vibration fatigue life also shows great sensitivity to the spacing between the stiffeners.展开更多
In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and...In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the re...The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.展开更多
The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite diffe...The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.展开更多
An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acousti...An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.展开更多
The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the proper...The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the properties of the shock waves and fragments, the experiments on the shock waves acting on the stiffened plates (penetrated and non-penetrated by fragments) are mainly conducted. The dynamic response rules of stiffened plates with holes under shock waves and fragments loading are obtained. The results show that the penetration of fragments into stiffened plates hardly affects their deformation produced by shock waves..展开更多
The 1 dimensional localization of elastic waves in disordered periodic multi span rib stiffened plates is investigated. The transfer matrix method is employed to obtain the transfer matrix of the system, and the metho...The 1 dimensional localization of elastic waves in disordered periodic multi span rib stiffened plates is investigated. The transfer matrix method is employed to obtain the transfer matrix of the system, and the method for calculating the Lyapunov exponents in continuous dynamic systems presented by Wolf is used to determine the localization factor. As examples, the numerical results of the localization factors are given for a disordered rib stiffened plate. The effects of the degree of disorder of span...展开更多
Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are...Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.展开更多
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv...For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.展开更多
A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of ...A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of stiffeners and in-plane displacement are neglected.Applying the (Hamilton's) principle,the motion equations of stiffened plates are obtained.The deflection of the plate is taken as Fourier series,and using Galerkin method,the discrete equations can be deduced,which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth(B-R) curves.展开更多
A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
The phenomena attendant to the perforation of truncated oval shape projectile into multi-layered stiffened plates were investigated. Dimensional analysis was employed to give an empirical formula. Then a membership fu...The phenomena attendant to the perforation of truncated oval shape projectile into multi-layered stiffened plates were investigated. Dimensional analysis was employed to give an empirical formula. Then a membership function was introduced to modify the empirical formula. The effects of initial velocities, base plate thicknesses, height and width of stiffener on residual velocities were explored. The predictions of the empirical formula are in reasonably good agreement with those of experiment and numerical results. All these results indicate that the empirical formula is capable of predicting the residual velocity of the projectile penetrating the multi-layered stiffened plates.展开更多
This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stres...This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.展开更多
The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The for...The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.展开更多
A new computational procedure for modelling the structural behavior of stiffened plates with symmetry boundary conditions is here presented.It uses two-dimensional finite elements as a way to decrease computational ti...A new computational procedure for modelling the structural behavior of stiffened plates with symmetry boundary conditions is here presented.It uses two-dimensional finite elements as a way to decrease computational time without losing precision thanks to a relatively small number of elements applied for analyzing out-of-plane displacements(deflections)and stresses.Adding,the constructal design method was included in the procedure,together with the exhaustive search technique,with the scope to optimize the stress/strain status of stiffened plates by design changes.For the purpose,a reference plate without stiffeners was initially design and used as starting point.Part of the volume was reshaped into stiffeners:thickness was reduced maintaining unchanged weight,length and width.The main goal was to minimize strains and stresses by geometric changes.Results demonstrated that,thanks to this design procedure,it is always possible to find an adequate geometry transformation from reference plate into stiffeners,allowing significant improvements in mechanical behavior.展开更多
A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuc...A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.展开更多
This paper reports the results of experimental research the longitudinal stiffeners in an orthotropic plated bridge deck on concerning the connection between the deck plate and the web of a microscopic scale. An impor...This paper reports the results of experimental research the longitudinal stiffeners in an orthotropic plated bridge deck on concerning the connection between the deck plate and the web of a microscopic scale. An important number of test specimens of a weld are studied with the help of a video microscope, to detect the efficiency of the root of the weld. The second part of the paper is concerned with parametric analysis of the lack of weld penetration by using accurate finite element modelling. The results demonstrate that the weld quality often required can not always be assured, which surely has important consequence on the stresses in the weld and the fatigue resistance.展开更多
基金supported by the National Key Research and Development Plan (2020YFB1709401)the National Natural Science Foundation (11821202,11732004,12002077,12002073)+1 种基金the Fundamental Research Funds for Central Universities (DUT21RC (3)076,DUT20RC (3)020)Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-063)and 111 Project (B14013).
文摘This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach.
基金supported by National Key Research and Development Project(2020YFE0204900)National Natural Science Foundation of China(Grant Nos.61903224,62073193,61873333)Key Research and Development Plan of Shandong Province(Grant Nos.2019TSLH0301,2021CXGC010204).
文摘As a critical structure of aerospace equipment,aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system.In this study,a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft.Firstly,together with numerical simulation,the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed,to establish the damage data.Subsequently,the amplitude-frequency characteristics of impact damage signals are extracted and put into an extreme learning machine(ELM)model to identify the impact location and damage degree,and the Gray Wolf Optimization(GWO)algorithm is employed to update the weight parameters of the model.Finally,experiments are conducted on the irregular aluminum alloy stiffened plate with the size of 2200 mm×500 mm×10 mm,the identification accuracy of impact position and damage degree is 98.90% and 99.55% in 68 test areas,respectively.Comparative experiments with ELM and backpropagation neural networks(BPNN)demonstrate that the impact damage identification of aluminum alloy stiffened plate based on GWO-ELM algorithm can serve as an effective way to monitor spacecraft structural damage.
基金Project(10932008)supported by the National Natural Science Foundation of ChinaProject(B07050)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2012GY2-26)supported by the Key Industry Program of Shaanxi Province,China
文摘Vibration tests were carried out on three types of stiffened aluminum plates with fully clamped boundaries under random base excitation. During the test, the response of the specimens was monitored using strain gauges. Based on the strain history, the accumulation of fatigue damage of the stiffened plates was estimated by means of the rainflow cycle counting technique and the Miner linear damage accumulation model in the time domain. Utilizing the change of natural frequencies, a nonlinear model was fitted for predicting the fatigue damage of plate and then the foregone failure criterion of 5% reduction in natural frequency is improved. The influence of section and spacing of the stiffeners on the vibration fatigue behavior of the aluminum plate was investigated. The results show that the fatigue life of aluminum plate increases with adding either T or L section riveted stiffeners. With the same cross-sectional area of stiffener, the T section stiffened plate shows longer fatigue life than L section stiffened plate. Meanwhile, the vibration fatigue life also shows great sensitivity to the spacing between the stiffeners.
基金The project supported by National Natural Science Foundation of China(90305018)
文摘In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
文摘The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.
文摘The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.
基金supported by the National Natural Science Foundations of China(Nos.11872079,11572109)the Science and Technology Project of Hebei Education Department(No.QN2019135)Advanced Talents Incubation Program of the Hebei University(No.521000981285)。
文摘An algorithm integrating reduced order model(ROM),equivalent linearization(EL),and finite element method(FEM)is proposed to carry out geometrically nonlinear random vibration analysis of stiffened plates under acoustic pressure loading.Based on large deflection finite element formulation,the nonlinear equations of motion of stiffened plates are obtained.To reduce the computation,a reduced order model of the structures is established.Then the EL technique is incorporated into FE software NASTRAN by the direct matrix abstraction program(DMAP).For the stiffened plates,a finite element model of beam and plate assembly is established,in which the nodes of beam elements are shared with shell elements,and the offset and section properties of the beam are set.The presented method can capture the root-mean-square(RMS) of the stress responses of shell and beam elements of stiffened plates,and analyze the stress distribution of the stiffened surface and the unstiffened surface,respectively.Finally,the statistical dynamic response results obtained by linear and EL methods are compared.It is shown that the proposed method can be used to analyze the geometrically nonlinear random responses of stiffened plates.The geometric nonlinearity plays an important role in the vibration response of stiffened plates,particularly at high acoustic pressure loading.
文摘The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the properties of the shock waves and fragments, the experiments on the shock waves acting on the stiffened plates (penetrated and non-penetrated by fragments) are mainly conducted. The dynamic response rules of stiffened plates with holes under shock waves and fragments loading are obtained. The results show that the penetration of fragments into stiffened plates hardly affects their deformation produced by shock waves..
基金National Natural Science F oundation of China (19972 0 18) and Projectsupported by the National Key Basic Research Foun-dation of China (G19980 2 0 3 17)
文摘The 1 dimensional localization of elastic waves in disordered periodic multi span rib stiffened plates is investigated. The transfer matrix method is employed to obtain the transfer matrix of the system, and the method for calculating the Lyapunov exponents in continuous dynamic systems presented by Wolf is used to determine the localization factor. As examples, the numerical results of the localization factors are given for a disordered rib stiffened plate. The effects of the degree of disorder of span...
文摘Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.
基金funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(12072056)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LK49)Nantong Science and Technology Plan Project(No.MS22019016).
文摘For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.
文摘A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented.Based on large deflection theory,a discretely stiffened plate model has been used.The tangential stresses of stiffeners and in-plane displacement are neglected.Applying the (Hamilton's) principle,the motion equations of stiffened plates are obtained.The deflection of the plate is taken as Fourier series,and using Galerkin method,the discrete equations can be deduced,which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth(B-R) curves.
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.
基金the National Natural Science Foudation of China (10602008 ,10625208)
文摘The phenomena attendant to the perforation of truncated oval shape projectile into multi-layered stiffened plates were investigated. Dimensional analysis was employed to give an empirical formula. Then a membership function was introduced to modify the empirical formula. The effects of initial velocities, base plate thicknesses, height and width of stiffener on residual velocities were explored. The predictions of the empirical formula are in reasonably good agreement with those of experiment and numerical results. All these results indicate that the empirical formula is capable of predicting the residual velocity of the projectile penetrating the multi-layered stiffened plates.
文摘This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.
文摘The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.
基金the CAPES(Coordination for the Improvement of Higher Education Personnel),finance code 001FAPERGS(Foundation for Research Support of the State of Rio Grande do Sul),CNPq(Brazilian National Council for Scientific and Technological Development)and the Italian Minister of Foreign Affairs and International Cooperation(MAECI),as part of the"Two Seats for a Solar Car"international project.
文摘A new computational procedure for modelling the structural behavior of stiffened plates with symmetry boundary conditions is here presented.It uses two-dimensional finite elements as a way to decrease computational time without losing precision thanks to a relatively small number of elements applied for analyzing out-of-plane displacements(deflections)and stresses.Adding,the constructal design method was included in the procedure,together with the exhaustive search technique,with the scope to optimize the stress/strain status of stiffened plates by design changes.For the purpose,a reference plate without stiffeners was initially design and used as starting point.Part of the volume was reshaped into stiffeners:thickness was reduced maintaining unchanged weight,length and width.The main goal was to minimize strains and stresses by geometric changes.Results demonstrated that,thanks to this design procedure,it is always possible to find an adequate geometry transformation from reference plate into stiffeners,allowing significant improvements in mechanical behavior.
文摘A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.
文摘This paper reports the results of experimental research the longitudinal stiffeners in an orthotropic plated bridge deck on concerning the connection between the deck plate and the web of a microscopic scale. An important number of test specimens of a weld are studied with the help of a video microscope, to detect the efficiency of the root of the weld. The second part of the paper is concerned with parametric analysis of the lack of weld penetration by using accurate finite element modelling. The results demonstrate that the weld quality often required can not always be assured, which surely has important consequence on the stresses in the weld and the fatigue resistance.