期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
ANALYSIS OF COUPLING INFLUENCES OF LABYRINTH SEAL PARAMETERS ON CROSS COUPLED STIFFNESS AND DIRECT DAMPING COEFFICIENT 被引量:3
1
作者 Zhou Shouqin, Xie Youbai (Theory of Lubrication and Bearing Institute, Xi’ an Jiaotiong University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期190-196,共7页
Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating par... Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided. 展开更多
关键词 Labyrinth seal Cross coupled stiffness Direct damping Steam exciting vibratio
下载PDF
Dynamics of a Dual Power-split Transmission Based on Loaded Tooth Contact Analysis
2
作者 DONG Hao FANG Zong-de DU Jin-fu 《International Journal of Plant Engineering and Management》 2013年第1期30-36,共7页
In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA)... In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission. 展开更多
关键词 dual power split transmission loaded tooth contact analysis time-varying mesh stiffness excitation bending-torsional coupling dynamic load
下载PDF
Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink 被引量:20
3
作者 Jian Zang Li-Qun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第4期801-822,共22页
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The non... Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity. 展开更多
关键词 bifurcation excited saddle harmonic chaotic oscillator stiffness freedom branches modeled
下载PDF
Vibration transmissibility characteristics of smart spring vibration isolation system
4
作者 倪德 朱如鹏 +2 位作者 陆凤霞 鲍和云 付秋菊 《Journal of Central South University》 SCIE EI CAS 2014年第12期4489-4496,共8页
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival... The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small. 展开更多
关键词 vibration transmissibility characteristics smart spring dry friction stiffness damping vibration isolation base excitation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部