期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structural design and stiffness matching control of bionic variable stiffness joint for human–robot collaboration
1
作者 Xiuli Zhang Liqun Huang Hao Niu 《Biomimetic Intelligence & Robotics》 2023年第1期46-56,共11页
The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stif... The physical compliance of interaction is an important requirement for safe and efficient collaboration between robots and humans,and the realization of human–robot compliance requires robot joints with variable stiffness similar to those of human joints.In this study,based on the tissue structure and driving principle of the human arm muscle ligament,a robot joint with variable stiffness is designed,consisting of an elastic belt and serial elastic actuator in parallel.The variable stiffness of the joint is realized by adjusting the tension length of the elastic belt.Surface electromyography(sEMG)signals of the human arm are used as the characterization quantity of joint stiffness to establish the pseudostiffness model of the elbow joint.The stiffness of the robot joints is adjusted in real-time to match the human arm stiffness based on the changes in sEMG signals of the human arm during operation.Real-time compliant interaction of human–robot collaboration is realized based on an end stiffness matching strategy.Additionally,to verify the effectiveness of the human joint stiffness matching-based compliance control strategy,a human–robot cooperative lifting experiment was designed.The bionic variable stiffness joint shows good stiffness adjustment,and the human–robot joint stiffness matching strategy based on human sEMG signals can improve the effectiveness and comfort of human–robot collaboration. 展开更多
关键词 Variable stiffness joint Bionic design Human-robot collaboration stiffness matching SEMG
原文传递
Development of a Composite Suspension with a Coil and Hydro-Pneumatic Spring 被引量:1
2
作者 杨波 陈思忠 +1 位作者 吴志成 杨林 《Journal of Beijing Institute of Technology》 EI CAS 2008年第3期280-284,共5页
A new composite suspension is developed, where a coil spring and a hydro-pneumatic spring are used in order to improve the poor reliability of off-road vehicle with pure hydro-pneumatic suspension. According to road c... A new composite suspension is developed, where a coil spring and a hydro-pneumatic spring are used in order to improve the poor reliability of off-road vehicle with pure hydro-pneumatic suspension. According to road conditions, the two springs play different roles. The method for matching the composite suspension stiffness and distributing the load is proposed. The working pressure of hydro-pneumatic spring as well as the load and stiffness characteristics of composite suspension is compared with a pure hydro-pneumatic suspension. In addition, the ISO weighted vehicle body acceleration, suspension travel and relative dynamic load of the wheels between two kinds of suspension are analyzed with a quarter vehicle mode. The simulation result shows that the developed composite suspension is more suitable for off-road vehicle than the one hydro-pneumatic suspension, because the composite suspension can reduce the working pressure, improve the reliability and keep a similar ride comfort with hydro-pneumatic suspension. 展开更多
关键词 composite suspension hydro-pneumatic spring coil spring matching stiffness
下载PDF
Evaluation of Myocardial Strain and Aortic Elasticity in Patients with Bicuspid Aortic Valve 被引量:1
3
作者 李阳 邓又斌 +4 位作者 毕小军 刘娅妮 张隽 李礼 陈斌 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第5期747-751,共5页
This study evaluated the myocardial strain and aortic elasticity in patients with bicuspid aortic valve(BAV) and then investigated the relation between them. Thirty-nine patients(30 males; mean age 44±19 years... This study evaluated the myocardial strain and aortic elasticity in patients with bicuspid aortic valve(BAV) and then investigated the relation between them. Thirty-nine patients(30 males; mean age 44±19 years; range 6 to 75 years) with BAV were recruited as BAV group, and 29 age- and sex-matched healthy controls(21 males; mean age 42±11 years; range 20 to 71 years) served as control group. Aortic strain, distensibility and stiffness index were derived using M-mode echocardiography. Left ventricular global myocardial strain was acquired with speckle-tracking echocardiography. Correlation between aortic elasticity and myocardial strain was also analyzed. The results showed that aortic stiffness was higher(17.5±14.0 vs. 5.3±2.7, P〈0.001), and aortic strain(4.9±4.7 vs. 11.0±4.1, P〈0.001) and distensibility(1.8±2.1 vs. 3.7±1.6, P〈0.001) were lower significantly in BAV group than in control group. Global circumferential strain(–19.1±4.2 vs. –22.5±3.7, P〈0.001), radial stain(29.8±14.9 vs. 38.0±8.8, P〈0.001) and longitudinal stain(–18.4±3.4 vs. –20.8±3.5, P〈0.001) were significantly lower in BAV group than in control group. There was weak association between aortic elasticity and myocardial strain. These findings indicated BAV patients manifest reduced myocardial strain which had weak relationship with aortic elastic lesion. 展开更多
关键词 elasticity longitudinal Strain speckle valve Correlation manifest stiffness regurgitation matched
下载PDF
Matching design of hydraulic load simulator with aerocraft actuator 被引量:5
4
作者 Shang Yaoxing Yuan Hang +1 位作者 Jiao Zongxia Yao Nan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第2期470-480,共11页
This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obsta... This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences. 展开更多
关键词 Aerocraft actuator Design Flight simulation Hydraulic drive and control Hydraulic load simulator (HLS) matching Servo control stiffness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部