The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for i...The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.展开更多
The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to t...The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.展开更多
基金supported the National Key Research and Development Program of China (Nos.2016YFE0202400, 2018YFC1505306)the National Natural Science Foundation of China (No.41971076)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.
基金Project (50378036) supported by the National Natural Science Foundation of China
文摘The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied.