Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete bea...In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.展开更多
It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety...It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.展开更多
Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-li...Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.展开更多
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金Sponsored by the National Natural Science Foundation of China(Grant No.5117804251308159+4 种基金51578047)the National High Technology Research and Development Program Project(Grant No.2008AA11Z102)China Railway Corporation Research and Development of Science and Technology Plan Project(Grant No.2014G004-B)China Communications Construction Co.LTD Science and Technology Research and Development Projects(Grant No.2014-ZJKJ-03)
文摘In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process,cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue-damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three-stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than5% error for the simulation model which can reveal the two-stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.
文摘It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.
基金financially supported by the National Natural Science Foundation of China (No. 21474005)the Fundamental Research Funds for the Central Universities (No. 3122016L011)
文摘Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.