Tailings impoundments can potentially collapse due to damage caused by earthquakes,which has frequently occurred around the world.This study takes the proposed valley type tailings impoundment in Yunnan as the researc...Tailings impoundments can potentially collapse due to damage caused by earthquakes,which has frequently occurred around the world.This study takes the proposed valley type tailings impoundment in Yunnan as the research object to analyze the dynamic response behavior under earthquake action with both numerical simulation and physical model test(1:300).The results of both tests show that the dynamic response of the valley type tailings impoundment is characterized by"medium stiffness effect",in other words,in a certain range,the"softer"the unsaturated tailings sand is,the more energy it can dissipate,which leads the decrease of the value of the acceleration amplification factor.In addition,the peak acceleration of the monitoring points increases with the vertical elevation,which indicates that the"elevation amplification effect"exists in the tailings impoundment dynamic response.The middle part of the outer side of the raised embankment reacts more sensitive than the crest,which is similar to the slope dynamic response.The starter dam reacts sensitively under the earthquake excitation,which should be given more attention during the seismic design.The dynamic response rules reflected by the numerical simulation are consistent with the results monitored on the physical model test,although there are some differences between their values.The dynamic response rules of the valley type tailings impoundment can provide basis for the design of the similar projects in this region.展开更多
A new type of suspension bridge is proposed based on the gravity stiffness principle.Compared with a conventional suspension bridge,the proposed bridge adds rigid webs and cross braces.The rigid webs connect the main ...A new type of suspension bridge is proposed based on the gravity stiffness principle.Compared with a conventional suspension bridge,the proposed bridge adds rigid webs and cross braces.The rigid webs connect the main cable and main girder to form a truss that can improve the bending stiffness of the bridge.The cross braces connect the main cables to form a closed space truss structure that can improve the torsional stiffness of the bridge.The rigid webs and cross braces are installed after the construction of a conventional suspension bridge is completed to resist different loads with different structural forms.A new type of railway suspension bridge with a span of 340 m and a highway suspension bridge with a span of 1020 m were designed and analysed using the finite element method.The stress,deflection of the girders,unbalanced forces of the main towers,and natural frequencies were compared with those of conventional suspension bridges.A stiffness test was carried out on the new type of suspension bridge with a small span,and the results were compared with those for a conventional bridge.The results showed that the new suspension bridge had a better performance than the conventional suspension bridge.展开更多
基金financially supported by project (Grant NO. U1502232, U1033601)-National Science Foundation of China-Yunnan Joint Fundproject (Grant NO. 20135314110005)-Research Fund for the Doctoral Program of Higher Education of China
文摘Tailings impoundments can potentially collapse due to damage caused by earthquakes,which has frequently occurred around the world.This study takes the proposed valley type tailings impoundment in Yunnan as the research object to analyze the dynamic response behavior under earthquake action with both numerical simulation and physical model test(1:300).The results of both tests show that the dynamic response of the valley type tailings impoundment is characterized by"medium stiffness effect",in other words,in a certain range,the"softer"the unsaturated tailings sand is,the more energy it can dissipate,which leads the decrease of the value of the acceleration amplification factor.In addition,the peak acceleration of the monitoring points increases with the vertical elevation,which indicates that the"elevation amplification effect"exists in the tailings impoundment dynamic response.The middle part of the outer side of the raised embankment reacts more sensitive than the crest,which is similar to the slope dynamic response.The starter dam reacts sensitively under the earthquake excitation,which should be given more attention during the seismic design.The dynamic response rules reflected by the numerical simulation are consistent with the results monitored on the physical model test,although there are some differences between their values.The dynamic response rules of the valley type tailings impoundment can provide basis for the design of the similar projects in this region.
基金The work described in this paper has been supported by the grants awarded by the Guangxi Major Science and Technology Project(No.AB18126047).
文摘A new type of suspension bridge is proposed based on the gravity stiffness principle.Compared with a conventional suspension bridge,the proposed bridge adds rigid webs and cross braces.The rigid webs connect the main cable and main girder to form a truss that can improve the bending stiffness of the bridge.The cross braces connect the main cables to form a closed space truss structure that can improve the torsional stiffness of the bridge.The rigid webs and cross braces are installed after the construction of a conventional suspension bridge is completed to resist different loads with different structural forms.A new type of railway suspension bridge with a span of 340 m and a highway suspension bridge with a span of 1020 m were designed and analysed using the finite element method.The stress,deflection of the girders,unbalanced forces of the main towers,and natural frequencies were compared with those of conventional suspension bridges.A stiffness test was carried out on the new type of suspension bridge with a small span,and the results were compared with those for a conventional bridge.The results showed that the new suspension bridge had a better performance than the conventional suspension bridge.