A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by t...A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.展开更多
Orb-web spiders and their webs constitute an ideal model system in which to study behavioural flexibility and spatial cognition in invertebrates due to the easily quantifiable nature of the orb web. A large number of ...Orb-web spiders and their webs constitute an ideal model system in which to study behavioural flexibility and spatial cognition in invertebrates due to the easily quantifiable nature of the orb web. A large number of studies demonstrate how spiders are able to modify the geometry of their webs in response to a range of different conditions including the ability to adapt their webs to spatial constraints. However, the mechanisms behind this impressive web-building flexibility in these cognitively limited animals remain poorly explored. One possible mechanism though may be spatial learning during the spiders' exploration of their immediate surroundings. This review discusses the importance of exploration behaviour, the reliance on simple behavioural rules, and the use of already laid threads as guidelines for web-building in orb-web spiders. The focus is on the spiders' ability to detect and adapt their webs to space limitations and other spatial disruptions. I will also review the few published studies on how spatial information is gathered during the exploration phase and discuss the possibility of the use of 'cognitive map'-like processes in spiders. Finally, the review provides suggestions for designing experimental studies to shed light on whether spiders gather metric information during the site exploration (cognitive map hypothesis) or rely on more simple binary information in combination with previously laid threads to build their webs (stigmergy hypothesis).展开更多
Cyber-physical systems(CPSs)are distributed assemblages of computing,communicating,and physical components that sense their environment,algorithmically assess the incoming information,and affect their physical environ...Cyber-physical systems(CPSs)are distributed assemblages of computing,communicating,and physical components that sense their environment,algorithmically assess the incoming information,and affect their physical environment.Thus,they share a common structure with other complex adaptive systems,and therefore share both the possible benefits and the probable harmful effects of emergent phenomena.Emergence is an often unexpected pattern that arises from the interactions among the individual system components and the environment.In this paper we focus on three major problems concerning emergence in the context of CPSs:how to successfully exploit emergence,how to avoid its detrimental effects in a single CPS,and how to avoid harmful emergence that arises due to unexpected interaction among several independently developed CPSs that are operating in the same environment.We review the state of the research with regard to these problems and outline several approaches that could be used to address them.展开更多
基金supported by the DEFENCE SCIENCE&TECHNOLOGY GROUP(DSTG)(9729)The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group。
文摘A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.
文摘Orb-web spiders and their webs constitute an ideal model system in which to study behavioural flexibility and spatial cognition in invertebrates due to the easily quantifiable nature of the orb web. A large number of studies demonstrate how spiders are able to modify the geometry of their webs in response to a range of different conditions including the ability to adapt their webs to spatial constraints. However, the mechanisms behind this impressive web-building flexibility in these cognitively limited animals remain poorly explored. One possible mechanism though may be spatial learning during the spiders' exploration of their immediate surroundings. This review discusses the importance of exploration behaviour, the reliance on simple behavioural rules, and the use of already laid threads as guidelines for web-building in orb-web spiders. The focus is on the spiders' ability to detect and adapt their webs to space limitations and other spatial disruptions. I will also review the few published studies on how spatial information is gathered during the exploration phase and discuss the possibility of the use of 'cognitive map'-like processes in spiders. Finally, the review provides suggestions for designing experimental studies to shed light on whether spiders gather metric information during the site exploration (cognitive map hypothesis) or rely on more simple binary information in combination with previously laid threads to build their webs (stigmergy hypothesis).
基金the Capacity Development Fund of Southwest University,China(No.SWU116007)the National Natural Science Foundation of China(Nos.61732019,61672435,and 61811530327)。
文摘Cyber-physical systems(CPSs)are distributed assemblages of computing,communicating,and physical components that sense their environment,algorithmically assess the incoming information,and affect their physical environment.Thus,they share a common structure with other complex adaptive systems,and therefore share both the possible benefits and the probable harmful effects of emergent phenomena.Emergence is an often unexpected pattern that arises from the interactions among the individual system components and the environment.In this paper we focus on three major problems concerning emergence in the context of CPSs:how to successfully exploit emergence,how to avoid its detrimental effects in a single CPS,and how to avoid harmful emergence that arises due to unexpected interaction among several independently developed CPSs that are operating in the same environment.We review the state of the research with regard to these problems and outline several approaches that could be used to address them.