We report the preparation of D2 molecules in v=2 level in molecular beam condition. A single longitudinal mode laser system was used for excitation of D2 from (v=0, j=0) to (v=2, j=0) with the scheme of stimulated...We report the preparation of D2 molecules in v=2 level in molecular beam condition. A single longitudinal mode laser system was used for excitation of D2 from (v=0, j=0) to (v=2, j=0) with the scheme of stimulated Raman pumping. An excitation efficiency of 25.2% has been achieved, which was determined by the scheme of resonance-enhanced multiphoton ion- ization. Dependence of relative excitation efficiency on laser energy has been measured. We found that the increasing rate of excitation efficiency became slower as pulse energy of Stokes laser increase, while the excitation efficiency still increases approximately linearly with pump pulse energies up to 60 mJ. The spectral line shapes of Raman transition was also measured at different laser energies and considerable dynamical Stark effect was observed. A single peak was found on the three dimension surface of relative excitation efficiency, indicating the process occurred in the present study is a process of stimulated Raman pumping instead of stimulated adiabatic Raman passage.展开更多
The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, v=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally e...The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, v=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally excited D2 molecules. Contribution from the reaction of spin-orbit excited F*(2P1/2) with vibrationally excited D2 was not found. Reaction of spin-orbit ground F(2P3/2) with vibrationally excited D2 was measured and DF products populated in v'=2, 3, 4, 5 were observed. Compared with the vibrationally ground reaction, DF products from the vibrationally excited reaction of F(2P3/2)+D2(v=1, j=0) are rotationally “hotter”. Differential cross sections at four collision energies, ranging from 0.32 kcal/mol to 2.62 kcal/mol, were obtained. Backward scattering dominates for DF products in all vibrational levels at the lowest collision energy of 0.32 kcal/mol. As the collision energy increases, angular distribution of DF products gradually shifts from backward to sideway. The collision-energy dependence of differential cross section of DF(v’=5) at forward direction was also measured. Forward-scattered signal of DF(v'=5) appears at the collision energy of 1.0 kcal/mol, and becomes dominated at 2.62 kcal/mol.展开更多
文摘We report the preparation of D2 molecules in v=2 level in molecular beam condition. A single longitudinal mode laser system was used for excitation of D2 from (v=0, j=0) to (v=2, j=0) with the scheme of stimulated Raman pumping. An excitation efficiency of 25.2% has been achieved, which was determined by the scheme of resonance-enhanced multiphoton ion- ization. Dependence of relative excitation efficiency on laser energy has been measured. We found that the increasing rate of excitation efficiency became slower as pulse energy of Stokes laser increase, while the excitation efficiency still increases approximately linearly with pump pulse energies up to 60 mJ. The spectral line shapes of Raman transition was also measured at different laser energies and considerable dynamical Stark effect was observed. A single peak was found on the three dimension surface of relative excitation efficiency, indicating the process occurred in the present study is a process of stimulated Raman pumping instead of stimulated adiabatic Raman passage.
基金supported by the Ministry of Science and Technology (No.2017YFF0104500)the Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (No.21573226, No.21822305)
文摘The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, v=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally excited D2 molecules. Contribution from the reaction of spin-orbit excited F*(2P1/2) with vibrationally excited D2 was not found. Reaction of spin-orbit ground F(2P3/2) with vibrationally excited D2 was measured and DF products populated in v'=2, 3, 4, 5 were observed. Compared with the vibrationally ground reaction, DF products from the vibrationally excited reaction of F(2P3/2)+D2(v=1, j=0) are rotationally “hotter”. Differential cross sections at four collision energies, ranging from 0.32 kcal/mol to 2.62 kcal/mol, were obtained. Backward scattering dominates for DF products in all vibrational levels at the lowest collision energy of 0.32 kcal/mol. As the collision energy increases, angular distribution of DF products gradually shifts from backward to sideway. The collision-energy dependence of differential cross section of DF(v’=5) at forward direction was also measured. Forward-scattered signal of DF(v'=5) appears at the collision energy of 1.0 kcal/mol, and becomes dominated at 2.62 kcal/mol.