Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Adv...Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.展开更多
基金supported by the National Natural Science Foundation of China(Nos.T2293730,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)+1 种基金the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210004).
文摘Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.